
 

 

LABORATORY MANUAL 

 

MICROCONTROLLER LAB (ECL204) (S4) 

 

DEPARTMENT OF ELECTRONICS AND COMMUNICATION 

ENGINEERING 

COLLEGE OF ENGINEERING TRIVANDRUM 

 

 

 

 

 

 

 

 



2 
 

 

DEPARTMENT OF ELECTRONICS AND COMMUNICATION 

ENGINEERING 

COLLEGE OF ENGINEERING TRIVANDRUM 

 

 

 

 

This is a controlled document of the Department of Electronics & Communication Engineering of the 

College of Engineering, Thiruvananthapuram. No part of this document can be reproduced in any form 

by any means without the prior written permission of the Head of the Department, Electronics & 

Communication Engineering, Thiruvananthapuram. This manual is prepared as per the 2019 KTU 

B Tech Programme Scheme.  

   

 

 

 

 

 

 

 

 

 



3 
 

ECL204 MICROCONTROLLER 

LAB 

CATEGORY L T P CREDIT 

PCC 0 0 3 2 

 

Preamble:  

This course aims to 

i. Familiarize the students with Assembly Language Programming of modern microcontrollers. 

ii. Impart the skills for interfacing the microcontroller with the help of Embedded C/Assembly 

Language Programming. 

Prerequisite: Nil 

Course Outcomes: After the completion of the course the student will be able to: 

CO1 

Apply programming skills in embedded C or assembly language to perform basic operations like 

data transfer, arithmetic operations, and code conversion using 8051 trainer kit. 

CO2 

Develop and implement algorithms to process and manipulate data for performing mathematical 

computations using 8051 trainer kit. 

CO3 Develop and analyze interfacing systems using microcontrollers. 

CO4 

Design and evaluate microcontroller-based systems for real-world applications considering 

efficiency and functionality. 

 

Mapping of course outcomes with program outcomes. 

 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 

CO1 2 1   2   1 2 2  2 1 1  

CO2 2 1   2   1 2 2  2 1 2  

CO3 3 2 1  2   1 2 2  2 2 2 1 

CO4 3 3 2 1 3   1 3 3  2 3 2 2 

 

 



4 
 

Assessment 

Mark distribution 

TOTAL MARKS CIE ESE ESE DURATION 

150 75 75 2.5 hours 

 

Continuous Internal Evaluation Pattern: 

Attendance                                                                                    : 15 marks 

Continuous Assessment                                                                : 30 marks 

Internal Test (Immediately before the second series test)            : 30 marks 

 

End Semester Examination Pattern: The following guidelines should be followed 

regarding award of marks 

(a) Preliminary work                                                                                                       : 15 Marks 

(b) Implementing the work/Conducting the experiment                                                 : 10 Marks 

(c) Performance, result and inference (usage of equipments and trouble shooting)        : 25 Marks                                                                                          

(d) Viva voce                                                                                                                    : 20 marks 

(e) Record                                                                                                                         : 5 Marks  



5 
 

 

 

 

 

 

 

SL.NO EXPERIMENT LIST  

(FROM SYLLABUS ACCORDING TO SCHEME) 

COURSE 

OUTCOME 

Page No. 

1 Familiarization of 8051 Trainer kit CO1 6 

2 Data transfer / exchange between specified memory locations CO1,2 14 

3 Finding largest and smallest from a series CO1,2 15 

4 Sorting in Ascending/Descending order CO1,2 16 

5 Basic arithmetic and logic operations 
 

CO1,2 18 

6 Sum of a series of 8 bit data CO1,2 22 

7 Multiplication by shift and add method CO1,2 24 

8 Square, cube and square root of 8 bit number CO1,2 26 

9 Matrix addition CO1,2 27 

10 LCM/HCF of given numbers CO1,2 28 

11 Code conversion –Decimal/ASCII CO2,3 31 

12 Time delay generation and relay interface CO2,3,4 32 

13 7-segment LED interfacing CO2,3,4 33 

14 ADC interface CO2,3,4 35 

15 DAC Interface with Waveform Generation CO2,3,4 36 

16 Stepper motor interfacing CO2,3,4 38 

17 Realisation of Boolean Expression CO2,3,4 43 

 Appendix -Instruction Set   



6 
 

Experiment 1 

FAMILIARIZATION OF 8051 TRAINER KIT 

Microcontroller is a programmable logic device that has computing and decision making capability, 

similar to that of a CPU of a computer.  

The Microcontroller communicates and operates in the binary numbers 0 and 1 called bits. Each 

Microcontroller has a fixed set of instruction in the form of binary patterns called machine language. 

However it is difficult for human to communicate in the language of 0s and 1s. Therefore, the binary 

instructions given abbreviated names called mnemonics, which form the assembly language for given 

micro controller. An assembler is used to convert assembly language to machine language. For example 

if we have to add two numbers in A and B. we can use the instruction ADDA,B . This add instruction 

is an example of mnemonics. Its machine language form will be 58, 65. This 58, 65 can be obtained 

from microcontroller manual .58 in hexadecimal represents the machine language instruction for ADD 

65 represents A, B.  

Each microcontroller recognizes and process a group of bits called the word and microcontrollers are 

classified according to their word length. For example, a controller with an 8 bit word is known as an 8 

bit micro controller and a controller with 32 bit word is known as a 32 bit microcontroller  

Organization of a Microcontroller Based system 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Block diagram of a microcontroller system. 



7 
 

Figure 1 shows the block diagram of a general purpose micro controller system. Micro controller is a 

self contained system or self sufficient system having CPU, internal RAM, internal ROM, Timers and 

counters, I/O ports, serial comp port  

Micro controller is a specific purpose digital controller that is meant to read data, perform limited  

calculations on that data and control its environment based on those calculations. 

Applications:  

1. Measuring instruments such as the oscilloscope, multi meter and the spectrum analyzer.  

2. Music related equipment such as synthesizers  

3. House hold items, such as the microwave oven, door bell, washing machine and television.  

4. Defence equipment such as fighter planes missiles and radar.  

5. Medical equipment such as blood pressure monitors, blood analyzers and monitoring system  

ARCHITECTURE: 

The accumulator register ‘A’:- The most important data register is the A register which acts as the 

accumulator. It is a mandatory that the A register carry one of the operands for all arithmetic 

instructions. The other operand may be in memory (RAM) or in any other register.  

Register B:- The register B is not a frequently used register, because it can be used as an operand only 

for some specific operations like multiplication of two numbers, one operand should be in A , and the 

other should be B. Same is the case for division. But it can store data.  

Internal RAM:- Totally, the 8051 has 256 bytes of RAM, but half of it is reserved to act as the “special 

function registers”, that is , the registers which are used to handle the activities of the peripherals of the 

device. The remaining 128 bytes is what is referred to as internal RAM, and is divided into parts. The 

first 32 bytes act as register banks 0 to 3; each bank contains 8 data registers named RO to R7. These 

registers are used for data manipulations and data movement. At a time, only one of these banks is 

operational. It is possible to switch from the current bank to another bank by using two bits of the PSW. 

By default, it is bank O that is the current bank. RAM locations from 0 to 7 are set aside for bank 0 

,where R0 is RAM location O, R1 is RAM location1, R2 is location 2, and so on, until memory location 

7, which belongs to R7 of bank 0. The second bank of registers R0- R7 starts at RAM location 08H and 

goes to location of 0F H. The third bank of R0-R7 starts at memory location 1OH and goes to location 

17H. Finally RAM locations 18H to IFH are set aside for the fourth bank of R0-R7.  

Bank 1 uses the same RAM as the stack A total of 16 bytes from locations 20 H to 2 FH are set aside 

for bit addressable read/write memory. A total of 80 bytes from locations 30 H to 7FH are used for read 

and write storage or what is normally called a scratch pad. These 80 locations of RAM are widely used 

for the purpose of storing data and parameters by 8051 programmers.  

 



8 
 

Default register bank – Bank O  

How to switch register banks? Register bank O is the default when the 8051 is powered up. We can  

switch to other banks by use of the PSW (program status word) register. Bits D4 and D3 of the PSW  

are used to select the desired register bank as shown in Table 1.  

 RS1 (PSW.4)  RSO (PSW.3) 

Bank 0  0  0 

Bank 1  0  1 

Bank 2  1  0 

Bank 3  1  1 

    Table 1: PSW to choose register bank 

The D3 and D4 bits of register program status word(psw) are often referred to as PSW.4 and PSW 3 

since they can be accessed by the bit addressable instructions SETB and CLR. For example, “SETB 

PSW 3” will make PSW 3 = 1 and select bank register 1  

Stack in the 8051:- The stack is a section of RAM used by the CPU to store information temporarily.  

This information could be data or address. The CPU needs this storage area since there are only a  limited 

number of registers.  

How stacks are accessed in the 8051 :- The register used to access the stack is called the SP (stack 

pointer) register. The stack pointer in the 8051 is only 8 bits wide, which means that RAM location 08 

is the first location used the stack by the 8051. The storing of a CPU register in the stack is called a 

PUSH, and pulling the contents off the stack back into a CPU register is called a pop. In other words, a 

register is pushed onto the stack to save it and popped off the stack to retrieve it.  

Pushing onto the stack: - In the 8051 the stack pointer (SP) points to the last location of the stack. As 

we push data onto the stack, the stack pointer is incremented by one. For every byte of data saved on 

the stack, SP is incremented only once.   

Popping from the stack:- Popping the content of the stack back into a given register is the opposite 

process of pushing .With every pop, the top byte of the stack is copied to the register specified by the 

instructions and the stack pointer is decremented once. 

The upper limit of the stack: Locations 08 to OF in the 8051 RAM can be used for the stack. This is 

because locations 20- 2FH of RAM are reserved for bit addressable memory and must not be used by 

the stack. If in a given program we need more area, we can change the SP to point to RAM locations 

30-7 FH. This is done with the instruction “MOVSP, XX”.  



9 
 

CALL instruction and the stack: In addition using the stack to save registers, the CPU also used the 

stack to save the address of the instruction just below the CALL instruction. This is how the CPU knows 

where to resume when it returns from the called subroutine  

PSW (program status word) register:- The PSW register is an 8-bit register. It is also referred to as 

the flag register. Although the PSW register is 8 bits wide, only 6 bits of it are used by the 8051. The 

two unused bits are user-definable flags. Four of the Flags are called conditional flags, meaning that 

they indicate some conditions that result after am instruction being executed. These four are CY (carry) 

AC (auxiliary carry) P (parity) and OV cover flow. The bits PSW 3 and PSW 4 are designated as RSO 

and RSI, respectively and are used to change the bank registers. The PSW 5 and PSW 1 bits are general 

– purpose status flag bits and can be used by the programmer for any purpose  

 

CY AC FO RSI RSO OV - P 

 

CY -PSW 7 -carry flag  

AC -PSW 6 - Auxiliary carry flag  

FO -PSW 5 -Available to the user for general purpose  

RSI -PSW 4 -Register Bank selector bit 1  

RSO-PSW 3- Register Bank selector bit 0  

OV -PSW 1 -user definable bit   

P -PSW 0 -parity flag  

CY the carry Flag: - this flag is set whenever there is a carry out from the D7 bit. This flag bit is  

affected after an 8-bit addition or subtraction. It can also be set to 1 or 0 directly by an instruction such 

as “SETB C” and CLR C” where “SETB C” stands for “set bit carry” and “CLRC” for “clear carry”  

Eg.:- MOV A, #9CH  

ADD A, # 64 H  

CY=1  

 

 

 

 



10 
 

AC, the auxiliary carry flag:  

If there is a carry from D3 to D4 during an ADD or SUB operation, this bit is set; otherwise, it is cleared. 

This flag is used by instructions that perform BCD arithmetic  

Eg:-. MOV A, #9cH  

ADDA, # 64 H’  

AC=1  

P, the parity flag:  

The parity flag reflects the number of 1s in the accumulator register only. If the A register contains an  

odd number of Is, then p=1. Therefor, p= 0 if A has an even number of 1s   

Eg. MOV A, #9CH  

ADD A, # 64H  

P=0  

OV the overflow flag: 

This flag is set whenever the result of a signed number operation is too large causing the high – order 

bit to overflow into the sign bit. In general, the carry flag is used to detect errors in unsigned 

arithmetic operations. The overflow flag is only used to detect errors in signed arithmetic operations.  

ROM:  

ROM can be 4k on chip and 60 k external ROM or 64k   

Addressing modes:  

The CPU can access data in various ways. The data could be in a register, or in memory, or be 

provided as an immediate value. These various ways of accessing data are called addressing modes. 

The various addressing modes of a microprocessor are determined when it is designed, and therefore 

cannot be changed by the programmer. The 8051 provides a total of five distinct addressing modes. 

They are as follows.  

1. Immediate  

2. Register  

3. Direct  

4. Register Indirect  

5. Indexed  



11 
 

1.Immediate, addressing mode:- In this addressing mode, the source operand is a constant. In 

immediate addressing mode, as the name implies, when the instruction is assembled, the operand 

comes immediately after the opcode. The immediate data must be preceded by the pound sign, “#” 

This addressing mode can be used to load information into any of the registers including the DPTR 

register. Examples follows  

MOV A, #25H ;load 25H into A  

MOV R4, #62 ; load 62 into R4  

MOV DPTR, #4521 ; DPTR = 4521  

2.Register addressing mode : Register addressing mode involves the use of registers to hold the data 

to be manipulated. 

Eg : MOVA, R0; copy the contents of R0 into A.  

The source and destination registers must match in size. In other words, coding “MOV DPTR, A” will 

give an error, since the source is an 8 bit register and the destination C5 a 16 bit register.  

We can move data between the accumulator and Rn (hr n = 0 to 7) but movement of data between Rn 

register is not allowed. For example, the instruction “MOV R4, R7” is invalid.  

3.Direct addressing modes : There are 128 bytes of RAM in the 8051. The RAM has been assigned 

addresses 00 to 7FH  

1. RAM locations 00-1FH are assigned to the register banks and stack.  

2. RAM locations 20-2FH are set aside as bit addressable space to save single bit data.  

3. RAM locations 30-7FH is available as place to save byte sized data.  

Although the entire 128 bytes of RAM can be accessed using direct addressing mode, it is most often 

used to access RAM locations 30-7FH. This is due to the Fact that register bank locations are accessed 

by the register names R0-R7, but there is no such name for other RAM locations. In the direct addressing 

mode the data is in RAM memory locations whose address is known, and this address is given as a part 

of the instruction. Contrast this with immediate addressing mode, in which the operand itself is provided 

with the instruction. The “#” sign distinguishes between the two modes.  

MOV R0, 40H; save content of RAM location 40H in R0 RAM locations. These registers can be 

accessed in two ways  

MOV A, 4 ; is same as  

MOV A, R4 ; which means copy R4 into A  

 



12 
 

4.Register indirect addressing mode : In the register indirect addressing mode, a register is used as 

pointer to the data. Register R0 and R1 are used for this purpose. In other words R2-R7 cannot be used 

to hold the address of an operand located in RAM when using this addressing mode when R0 and R1 

are used as pointers, that is, when they hold the addresses of RAM locations, they must be preceded by 

the “@” sign, as show below MOV A, @R0; move contents of RAM location whose address is held by 

R0 into A.  

MOV @ R1, B ; move contents of B into RAM locations 

whose address is held by R1.  

Adv : - one of the advantages of register indirect addressing mode is that it makes accessing data 

dynamic rather than static as in the case of direct addressing mode. Example shows two cases of copying 

55H into RAM locations 40H to 45H.  

In solution (b) that there are two instructions that are repeated numerous times. We can create a loop 

with those two instructions as shown in solution (c) is the most efficient and is possible only because of 

register indirect addressing mode. Looping is not possible in direct addressing mode. This is the main 

difference between the direct and register indirect addressing modes.  

5.Indexed addressing modes is widely used in accessing data elements of look-up table entries located 

in the program ROM space of the 8051. The instruction used for this purpose is “MOVC A, @ 

A+DPTR”. The 16-bit register DPTR and register A are used to form the address of the data element 

stores in on-chip ROM. Because the data elements are stored in the program (code) space ROM of the 

8051, the instruction MOVC is used instead of MOV. The “c” means code. In this instruction the 

contents of A are added to the 16bit register DPTR to form the 16 bit address of the needed data.  

PORTS 

For input output operations 8051 has 4 ports.  

PORT 0:  

Port 0 provides both address and data. The 8051 multiplexes address and data through port 0 to save 

pins. When ALE=0, it provides data D0-D7, but when ALE = 1 it has address A0-A7. Therefore, ALE 

is used for de multiplexing address and data with the help of a 74L5373 latch. The pins of PO must be 

connected externally to a 10k pull-up resistor. This is due to the fact that PO is an open drain, unlike 

P1, P2 and P3 with external pull-up resistors connected to P0 it can be used as simple Input Out put 

port, just like P1 and P2. In contrast to port 0, ports P1, P2, and P3 do not need any pull up resistors 

since they already have pull-up resistors internally.  

 PORT1 and PORT2:  

In 8051 based systems with no external memory connection, both P1 and P2 are used as simple Input –

Output. However, in 8031/8051 based systems with external memory connections, port 2 must be used 

along with P0 to provide the 16-bit address for the external memory  



13 
 

PORT3:  

Occupies a total of 8 pins. It can be be used as input or output. P3 does not need any pull-up resistors. 

Although port is configured as an input port upon reset, this is not the way it is most commonly used. 

Ports has the additional function of providing some extremely important signals such as interrupts.  

P3 bit Function Pin  

P3.0 RxD 10  

P3.1 TxD 11  

P3.2 INTO 12  

P3.3 INTI 13  

P3.4 T0 14 

P3.5 T1 15  

P3.6 WR 16  

P3.7 RD 17  

P3.1 are used for the RXD and TXD serial communications signals. Bits P3.2 and P3.3 are set aside 

for external interrupts. Bits P3.4 and P3.5 are used for Timers 0 and 1. P3.6 and P3.7 are used to 

provide the WR and RD signals of external memory connections. 

 

 

 

 

 

 

 

 

 

 

 

 



14 
 

Experiment 2 

DATA TRANSFER / EXCHANGE BETWEEN SPECIFIED MEMORY LOCATIONS 

 

Aim:  

Write a program to transfer data between memory locations using 8051. 

Apparatus Required: 

8051 Microcontroller kit, (0-5V) DC Power Supply  

Theory:  

1. The data is transferred between two memory locations which are done in blocks. 

2. The XCH instruction loads the accumulator with the byte value of the specified operand while 

simultaneously storing the previous contents of the accumulator in the specified operand.  

Algorithm: 

Step 1: Count from memory location is moved to register  

Step 2: zero is moved to register  

Step 3: mov DPTR with the starting address of array  

Step 4: content of array location is moved to accumulator  

Step 5: Increment DPTR 

Step 6: DPTR addresss is stored in to the stack  

Step 7: mov DPTR with memory location.ie starting address of destination  

Step 8: store the content of accumulator in to register  

Step 9: move the value of register into a  

Step 10: move the value of a into dpl  

Step 11: move the value of a into address stored in DPTR  

Step 12: increment register  

Step 13:pop DPTR value from stack  

Step 14: decrement register and jump to step 4 if register is non zero  

Step 15: Halt the program  



15 
 

Experiment 3 

FINDING LARGEST AND SMALLEST FROM A SERIES 

 

Aim:  

Write a program to find smallest and largest number from a series using 8051  

Apparatus Required: 

8051 Microcontroller kit, (0-5V) DC Power Supply  

Theory:  

1. Let Internal memory location (say 40H) has the biggest number i.e. zero. 

2. Now the biggest number in internal memory location is stored in memory as the Result.  

3. Now compare the first number with internal memory location. If it is greater, move it to internal 

memory  

Algorithm:  

Step 1: Number of elements in an array is moved from memory location to A  

Step 2: Number of elements is moved to register  

Step 3: Move 00 to B  

Step 4: Increment DPTR to get the first element  

Step 5: Element from memory location is moved to accumulator  

Step 6: Jump to step 7 if A and B are not equal   

Step 7: If carry jump to step 9 else jump to step 8  

Step 8: Large number from A is moved to B  

Step 9: Increment DPTR to get next number  

Step 10: Decrement register and if jump to step 5 if register is non zero else jump to Step 11. 

Step 11: Move large number from B to A  

Step 12: Largest number is moved to the memory location  

Step 13: Halt the program  

 



16 
 

Experiment 4 

SORTING IN ASCENDING/DESCENDING ORDER 

 

Aim: 

Write a program to sort numbers in ascending and descending order using 8051  

Apparatus Required:: 

8051 Microcontroller kit, (0-5V) DC Power Supply  

Theory: 

ASCENDING ORDER  

1. The sorting technique used here is relatively simple.  

2. First consider the first two numbers of the array.  

3. Sort according to which is from lowest to highest.  

DESCENDING ORDER  

1. The sorting technique used here is relatively simple.  

2. First consider the first two numbers of the array.  

3. Sort according to which is from highest to lowest.  

Algorithm:  

Step 1: Load accumulator with no. of elements from memory location  

Step 2: Decrement no. of elements to obtain no. of steps in first cycle.  

Step 3: move the first value to accumulator from 4301 and then move to Register  

Step 4: move the value of no. of searches to R5   

Step 5: move the second value to accumulator from next memory location.  

Step 6: move this value to B  

Step 7: move the content of Register to accumulator.  

Step 8: compare the two no’s and if not in decreasing order proceed to step 10 else move to step 11,           

else proceed to next step. 

Step 9: if carry is found on comparing the two no’s i.e,the no’s are in descending order swap the no’s  



17 
 

Step 10: decrement R5 and if not zero proceed to step 5  

Step 11: decrement R4 and if not zero move to step 3.  

Step 12: halt the program.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



18 
 

Experiment 5 

BASIC ARITHMETIC AND LOGIC OPERATIONS 

 

a)Addition of two 8 bit numbers  

Algorithm:   

Step 1: First number is moved from memory location to accumulator  

Step 2: Increment DPTR in order to point second number  

Step 3: First number is moved to Register  

Step 4: Second number is moved to accumulator  

Step 5: Add first number and second number  

Step 6: Increment DPTR in order to point the result  

Step 7: Result is stored in memory location   

Step 8: Increment DPTR to point carry  

Step 9: Clear accumulator  

Step 10: If carry is zero, then follow step12; otherwise step 10  

Step 11: Add 01 to the accumulator in order to represent the carry  

Step 12: Move carry status to memory location  

Step 13: Halt the program   

b)Subtraction two 8 bit numbers  

Algorithm:  

Step 1: First number is moved from memory location to accumulator  

Step 2: Increment DPTR in order to point second number  

Step 3: First number is moved to register  

Step 4: Second number is moved to accumulator  

Step 5: Subtract first and second number  

Step 6: Increment DPTR in order to point result  



19 
 

Step 7: Result is stored in memory   

Step 8: Halt the program  

c) Multiplication of two 8 bit numbers  

Algorithm:  

Step 1: First number is loaded from memory location to accumulator  

Step 2: Increment DPTR pointing second number  

Step 3: First number is moved to B  

Step 4: Second number is moved to accumulator  

Step 5: Multiply first number and second number  

Step 6: Increment DPTR in order to store the lowest 8-bit result 

Step 7: The lowest 8 bit is stored in DPTR location  

Step 8: Increment DPTR in order to store upper 8 bits  

Step 9: Content of B is moved to A  

Step 10: Store upper 8 bits in the memory location  

Step 11: Halt the program  

d) Division of 8 bit numbers  

Algorithm:  

Step 1: First number is loaded from memory location to accumulator 

Step 2: Increment DPTR pointing the second number  

Step 3: First number is moved to B  

Step 4: Second number is moved to accumulator  

Step 5: Divide First number by second number  

Step 6: Increment DPTR in order to store the quotient   

Step 7: Quotient is stored in the DPTR location  

Step 8: Increment DPTR  

Step 9: Content of B is moved to accumulator  



20 
 

Step 10: Store the reminder in the memory location  

Step 11: Halt the program  

e) AND operation of two 8-bit numbers  

Algorithm:  

Step 1: First number is loaded from memory location to the accumulator  

Step 2: Increment DPTR pointing second number  

Step 3: First number is moved to B  

Step 4: Second number is moved to A  

Step 5: AND operation of first and second number  

Step 6: Increment DPTR to store the result  

Step 7: Result is stored in DPTR location   

Step 8: Halt the program  

f) OR operation of two 8-bit number  

Algorithm:  

Step 1: First number is loaded from memory location to the accumulator  

Step 2: Increment DPTR pointing second number 

Step 3: First number is moved to B  

Step 4: Second number is moved to A  

Step 5: OR operation of first and second number  

Step 6: Increment DPTR to store the result  

Step 7: Result is stored in DPTR location   

Step 8: Halt the program  

g) XOR operation of two 8-bit numbers  

Algorithm:  

Step 1: First number is loaded from memory location to the accumulator  

Step 2: Increment DPTR pointing second number  



21 
 

Step 3: First number is moved to B  

Step 4: Second number is moved to A  

Step 5: EX-OR operation of first and second number  

Step 6: Increment DPTR to store the result  

Step 7: Result is stored in DPTR location   

Step 8: Halt the program  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



22 
 

Experiment 6 

SUM OF A SERIES OF 8 BIT DATA 

 

Aim:  

Write a program to find the sum of series of first n 8-bit natural numbers using 8051.  

Apparatus Required:  

8051 Microcontroller kit, (0-5V) DC Power Supply  

Theory:  

1. Sum of n natural numbers can be found out by the equation n(n+1)/2.  

2. Here it is found out by decrementing and adding the values from the given number till it reaches 

zero  

Algorithm:  

Step 1: Number of elements stored in memory location is moved to accumulator  

Step 2: Content of A is moved to R4  

Step 3: Clear A  

Step 4: Increment DPTR to get the first number  

Step 5: Sum=0  

Step 6: Carry=0  

Step 7: Number is moved from DPTR to A  

Step 8: Content of Register is moved to A  

Step 9: Increment DPTR to get the next number  

Step 10: Partial sum is moved to Register  

Step 11: If carry jump to step13 else jump to step 12  

Step 12: Jump to step 16  

Step 13: Move R1 to A  

Step 14: Add 01 to accumulator to increment the carry  

Step 15: Carry is restored to R1  



23 
 

Step 16: Decrement and jump if R4 is not equal to zero to step 7 else moved to step 17.  

Step 17: Sum is moved from Register to A  

Step 18: Move sum from accumulator to memory location  

Step 19: Increment DPTR in order to store the carry  

Step 20: Carry is moved from R1 to A  

Step 21: Store carry into a memory location  

Step 22: Halt the program  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 
 

Experiment 7 

MULTIPLICATION BY SHIFT AND ADD METHOD 

 

Aim:  

Write a program to multiply two 8-bit numbers by shift and add method using 8051  

Apparatus Required:  

8051 Microcontroller kit, (0-5V) DC Power Supply  

Theory:  

Shift-and-add multiplication is similar to the multiplication performed by paper and pencil. This 

method adds the multiplicand X to itself Y times, where Y denotes the multiplier. To multiply two 

numbers by paper and pencil, the algorithm is to take the digits of the multiplier one at a time from 

right to left, multiplying the multiplicand by a single digit of the multiplier and placing intermediate 

product in the appropriate positions to the left of the earlier results.  

 As an example, consider the multiplication of two unsigned 4-bit numbers, 8 (1000b) and 9 (1001b). 

Thus, the multiplication can be performed by shifting and adding method. Shifting multiplier by one 

bit left and if the MSB is high, performs addition between product (intermediate) and multiplicand 

followed by shift. If MSB is low perform shifting only and the process continues for 2n times, where 

n is the number of bits in multiplier and multiplicand. The main advantage of this type process is its 

faster operation for large number of bit multiplication.  

In general, the multiplication require n-bit multiplicand by n-bit multiplier require 2n registers to hold 

numbers and product. And require 2n-bit adders and shifters.  

An e.g. 4-bit multiplicand x 4-bit multiplier results 8-product and require 8-bit registers to hold data.  

Algorithm: 

Step 1: Clear the product register  

Step 2: Initialise counter register as 08  

Step 3: load multiplicand to accumulator from 4200  

Step 4: store multiplicand to R1  

Step 5: load multiplier to accumulator from 4201 and store to R2  

Step 6: load product in R0 to accumulator  

Step 7: rotate product left by one bit  



25 
 

Step 8: clear the LSB of product.  

Step 9: store shifted product from A to Register  

Step 10: load multiplier to accumulator and rotate multiplier through carry  

Step 11: clear LSB of multiplier  

Step 12: store the shifted multiplier to R2  

Step 13: if no carry in shifting operation go to step 17  

Step 14: load product to accumulator   

Step 15: add product and multiplicand   

Step 16: store result to product in Register 

Step 17: decrement the counter R3 and if R3 not equal to zero go to step 6 else store the result  

Step 18: store the result from Register to 4202  

Step 19: halt the program 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



26 
 

Experiment 8 

SQUARE, CUBE AND SQUARE ROOT OF 8 BIT NUMBER 

 

Aim: 

To find square, cube and square root of numbers using 8051.  

Algorithm: 

Step1: Content from 4300(address of memory location whose square to be find out) is moved to 

accumulator and B register 

Step 2: Multiply A and B  

Step 3: Store the lower eight bit of result to the memory location 4301  

Step 4: move upper 8 bit from B to A  

Step 5: Store upper 8 bit to the location 4302  

Step 6: Halt the program  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



27 
 

Experiment 9 

MATRIX ADDITION 

 

Aim:  

To add two m x n matrices  

Theory:  

By incrementing dptr and each time making change only in its most significant bit we can perform 

matrix (array) addition. Take values from 4300, 4400 and store added value in 4700 and increment to 

take values from 4301,4401 and store value in 4701, etc is the procedure followed. Each matrix to be 

added is placed as linear one-dimensional arrays in 4300,4301, etc and other in 4400,4401, etc and 

values of added matrix is placed in similar fashion in 4700,4701, etc  

Algorithm: 

Step 1: Move row value from memory location  

Step2: Increment dptr to get column value  

Step 3: Multiply row and column value to get total number of elements and store this value in Register  

Step 4: Mov dpl 00  

Step 5: Mov dph 43(dptr pointing element in first matrix)  

Step 6: Move the element from address pointed by dptr  

Step 7: Move this element to R1  

Step 8: Move dph 44(dptr pointing to element of the second matrix)  

Step 9: Move this element to accumulator  

Step 10: Add two elements from two matrices  

Step 11: Move dph 45(dptr pointing to element of the resultant matrix)  

Step 12: Increment dptr  

Step 13: decrement r0 and jump to step 5 if r0 is nonzero; otherwise stop  

 

 

 



28 
 

Experiment 10 

LCM/HCF OF GIVEN NUMBERS 

 

Aim:  

Write a program to find LCM/HCF of given numbers using 8051  

Theory:  

The least common multiple (also called the lowest common multiple or smallest common multiple) of 

two integers a and b, usually denoted by LCM (a, b), is the smallest positive integer that is a multiple 

of both a and b.  

An example:  

The LCM of 4 and 6:  

Multiples of 4 are: 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76… And the 

multiples of 6 are: 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72...  

Common multiples of 4 and 6 are simply the numbers that are in both lists: 12, 24, 36, 48, 60, 72... So 

the least common multiple of 4 and 6 is the smallest one of those 12. 

  

The highest common factor (HCF), also known as the greatest common factor (GCF), or greatest 

common divisor (GCD), of two or more non-zero integers, is the largest positive integer that divides 

the numbers without a remainder.  

An example: The number 54 can be expressed as a product of two other integers in several different 

ways:  

54 X 1 = 27 X 2 = 18 X 3 = 9 X 6  

Thus the divisors of 54 are:  

1, 2, 3, 6, 9, 18, 27, 54  

Similarly the divisors of 24 are:  

1, 2, 3, 4, 6, 8, 12, 24  

The numbers that these two lists share in common are the common divisors of 54 and 24: 1,2, 3, 6  

The greatest of these is 6.  

 



29 
 

That is the HCF of 54 and 24. One writes:  

gcd(54, 24) = 6  

Algorithm: 

Step 1: Move first number from memory location to register  

Step 2: Move second number from 4201 to r1  

Step 3: Load number1 to accumulator 

Step 4: Set R2 for LCM (first number)  

Step 5: Load number 2 to B  

Step 6: Divide number1 by number2  

Step 7: Move reminder to accumulator  

Step 8: If acc=0, go to find HCF, else next step  

Step 9: Move LCM to accumulator  

Step 10: Acc=number1+LCM  

Step 11: Store A to R2(as LCM)  

Step 12: Go to next check  

Step 13: Move number2 to accumulator  

Step 14: Set R3 for HCF and set number2 as HCF   

Step 15: Load number2 to B  

Step 16: Move number1 to A  

Step 17: Divide number1/number2  

Step 18: Move reminder to A  

Step 19: If A=0, go to store result, else next step   

Step 20: number2=reminder  

Step 21: Move HCF to a  

Step 22: Number1=HCF  

Step 23: Go to next check  



30 
 

Step 24: Load LCM to A  

Step 25: Point external memory location for storing LCM  

Step 26: Store LCM  

Step 27: Point external memory location for storing HCF  

Step 28: Store HCF  

Step 29: Halt the program  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



31 
 

Experiment 11 

Code conversion –Decimal/ASCII 

 

Aim:  

To write programs to convert between hexadecimal, decimal and ASCII numbers.  

Theory: 

1. Acronym for the American Standard Code for Information Interchange. Pronounced ask-ee, ASCII 

is a code for representing English characters as numbers, with each letter assigned a number from 0 to 

127.  

2. To get decimal value, 30H is subtracted from the ASCII code.  

Decimal to ASCII  

Algorithm: 

Step 1: Move the number from memory location to accumulator  

Step 2: Add 30H to the content of accumulator  

Step 3: store the value in to 420d  

Step 4: Halt the program  

ASCII to Decimal  

Algorithm: 

Step 1: Move the number from memory location to accumulator  

Step 2: Subtract 30H from the content of accumulator  

Step 3: store the value into 420d  

Step 4: Halt the program  

 

 

 

 

 



32 
 

Experiment 12 

Time Delay Generation and Relay Interface 

 

Aim: 

To study time delay generation and relay interface using 8051  

Apparatus Required:  

8051 microcontroller kit, (0-5V) DC battery 

Theory: 

1. Assume the processor is clocked by a 12MHz crystal.  

2. That means, the timer clock input will be 12MHz/12 = 1MHz  

3. That means, the time taken for the timer to make one increment = 1/1MHz = 1uS  

4. For a time delay of “X” uS the timer has to make “X” increments.  

5. 2^16 = 65536 is the maximum number of counts possible for a 16-bit timer.  

6. Let TH be the value that has to be loaded to TH register and TL be the value that has to be loaded to 

TL register.  

7. Then, THTL = Hexadecimal equivalent of (65536-X) where (65536-X) is considered indecimal. 

 

 

 

 

 

 

 

 

 

 

 



33 
 

Experiment 13 

7 SEGMENT LED INTERFACING 

 

Aim:  

To write an assembly language program to display characters on a seven display interface.  

Apparatus Required:  

8051 microcontroller kit, (0-5V) DC battery 

Theory:  

● Enter a program.  

● Initialize number of digits to Scan  

● Select the digit position through the port address C0  

● Display the characters through the output at address C8.  

● Check whether all the digits are display.  

● Repeat the Process.  

 

Seven segment display 

 



34 
 

• Form a 0 to 9 counter with a predetermined delay (around 1/2 second here).  

• Convert the current count into digit drive pattern.  

• Put the current digit drive pattern into a port for displaying.  

SAMPLE INPUT AND OUTPUT:  

Sl.No  Input (hex Values)  Output (Characters) 

   

   

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



35 
 

Experiment 14 

ADC INTERFACE 

 

Aim:  

To write an assembly language program to display Characters on a seven display interface.  

Apparatus Required:  

8051 microcontroller kit, (0-5V) DC battery  

Theory: 

1. Make ALE low/high by moving the respective data from A register to DPTR.  

2. Move the SOC(Start of Conversion) data to DPTR from FFD0  

3. Check for the End of Conversion and read data from Buffer at address FFC0  

4. End the Program.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



36 
 

Experiment 15 

DAC Interface with Waveform Generation 

 

Aim:  

To write and execute 8051 programs to generate.  

SQUARE WAVE OF 50% DUTY CYCLE   

Duty cycle =50%  

 =TON / (TON+TOFF)  

Here TON =TOFF 

Algorithm:  

Step 1: move FF(analog voltage 10v) to accumulator  

Step 2: move accumulator to DAC input  

Step 3: move 00 (analog voltage 0v) to accumulator  

Step 4: move accumulator to DAC input and go to step1  

SQUARE WAVE OF 40% DUTY CYCLE   

Duty cycle =40% =0.4  

TON / (TON+TOFF) =0.4  

TON = 0.4TON +0.4TOFF  

0.6 TON =0.4TOFF  

TON / TOFF =2/3  

TON = 2 delay  

TOFF = 3 delay 

Algorithm:  

Step 1: move FF(analog voltage 10v) to accumulator  

Step 2: move accumulator content to DAC input  

Step 3: move 00 (analog voltage 0v) to accumulator  



37 
 

Step 4: move accumulator content to DAC input and go to step1  

SAW TOOTH WAVEFORM  

Algorithm:  

Step1: move 00 (analog voltage 0v) to accumulator  

Step2: move accumulator to DAC input  

Step3: increment A  

Step4: If A not equal to zero and go to step3 go to step1  

TRIANGULAR WAVEFORM  

Algorithm:  

Step 1: move 00 (analog voltage 0v) to accumulator  

Step 2: move accumulator to DAC input  

Step 3: increment A  

Step 4: If A not equal to FF (analog voltage 10V) go to step 2 Step5: decrement A  

Step 6: move accumulator to DAC input  

Step 7: If A not equal to 0 (analog voltage 0V) go to step 5 else goto step 1  

STAIRCASE WAVEFORM  

Calculations:  

No. of steps = 5  

Step width = 255/5 = 51D= 33H 

Algorithm:  

Step1: move 00 (analog voltage 0v) to accumulator 

Step 2: move accumulator to DAC input 

Step 3: Add A and 33  

Step 4: Go to step1  

  

 



38 
 

Experiment No: 16 

Stepper Motor Interfacing 

 

Aim:  

To write an assembly program to make the stepper motor and DC motor to run in forward and reverse 

direction.  

Apparatus Required:  

Stepper motor, 8051 microprocessor kit, (0-5V) power supply  

Theory:  

1. Fix the DPTR with the Latch Chip address FFC0  

2. Move the values of register A one by one with some delay based on the 2-Phase switching Scheme 

and repeat the loop.  

3. For Anti Clockwise direction repeat the step 3 by reversing the value sequence.  

4. End the Program  

 3600 CLOCKWISE DIRECTION 

ADDRESS  LABEL  MNEMONICS 

8000  AGAIN  MOV R6, #0C 

8002  RPT1  MOV R0, #04 

8004   MOV DPTR, #8200 

8007   LCALL ROT 

800A   DJNZ R6, RPT1 

800C   SJMP AGAIN 

800E  ROT  MOVX A, @DPTR 



39 
 

800F   MOV P1,A 

8011   LCALL DELAY 

8014   INC DPTR 

8015   DJNZ R0, ROT 

8017   RET 

 

 

8018  DELAY  MOV R1, #0A 

801A  D1  MOV R2, #FF 

801C  D2  DJNZ R2, D2 

801E   DJNZ R1, D1 

8020   RET 

 

 3600 COUNTER CLOCKWISE  

ADDRESS  LABEL  MNEMONICS 

8000  AGAIN  MOV R6, #0C 

8002  RPT1  MOV R0, #04 

8004   MOV DPTR, #8200 

8007   LCALL ROT 



40 
 

800A   DJNZ R6, RPT1 

800C   SJMP AGAIN 

800E  ROT  MOVX A, @DPTR 

800F   MOV P1,A 

8011   LCALL DELAY 

8014   INC DPTR 

8015   DJNZ R0, ROT 

8017   RET 

8018  DELAY  MOV R1, #0A 

801A  D1  MOV R2, #FF 

801C  D2  DJNZ R2, D2 

801E   DJNZ R1, D1 

8020   RET 

 

 180 CLOCKWISE AND COUNTER CLOKWISE 

ADDRESS  LABEL  MNEMONICS 

8000  AGAIN  MOV R6, #06 

8002  RPT1  MOV R0, #04 



41 
 

8004   MOV DPTR, #8200 

8007   LCALL ROT 

800A   DJNZ R6, RPT1 

800C   MOV R6,#06 

800E  RPT2  MOV R0,#04 

8010   MOV DPTR,#8300 

8003   LCALL ROT 

8016   DJNZ R6, RPT2 

8018   SJMP AGAIN 

801A  ROT  MOVX A,@DPTR 

801B   MOV P1,A 

801D   LCALL DELAY 

8020   INC DPTR 

8021   RET 

8023  DELAY  MOV R1, #50 

8024  D1  MOV R2, #FF 

8026  D2  DJNZ R2, D2 

8028   DJNZ R1, D1 



42 
 

802B   RET 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



43 
 

Experiment No: 17 

REALIZATION OF BOOLEAN EXPRESSIONS 

 

Aim:  

Write an assembly language program to perform logical operations AND, OR, XOR on two eight bit 

numbers stored in internal RAM locations 21h, 22h  

Apparatus Required:  

8051 microcontroller kit, (0-5V) DC battery  

Truth table  

C  B  A  S  C 

0  0  0  0  0 

0  0  1  1  0 

0  1  0  1  0 

0  1  1  0  1 

1  0  0  1  0 

1  0  1  0  1 

1  1  0  0  1 

1  1  1  1  1 

 

 

 

 

 



44 
 

Appendix 

INSTRUCTION SET 

 

ACALL target address  

Function       : Absolute Call  

Flags             : None  

ACALL stands for "absolute call." It calls subroutines with a target address within 2K bytes from the current 

program counter (PC).   

Eg. ACALL delay  

ADD A, source byte  

Function     : ADD  

Flags           : OV, AC, CY  

This adds the source byte to the accumulator (A), and places the result in A. Since register A is one byte in size, 

the source operands must also be one byte.  

The ADD instruction is used for both signed and unsigned numbers.   

Unsigned addition  

In the addition of unsigned numbers, the status of CY, AC, and OV may change. The most important of these 

flags is CY. It becomes 1 when there is a carry from D7 bit Example:  

MOV A, #45H              ;A=45H  

ADD A, #4FH              ;A= 94H (45H+4FH) 

                                     ;CY=0, AC=1  

Addressing mode:  

The following addressing modes, are supported for the ADD instruction: 

1. Immediate: ADD A,#data Example: ADD A,#25H  

2. Register : ADD A, Rn Example: ADD A,R3  

3. Direct: ADD A, direct Example: ADD A,30H   

4. Register-indirect: ADDA,@Ri Examples: ADD A,@R0   

 

 



45 
 

Signed addition and negative numbers  

In the addition of signed numbers, special attention should be given to the overflow flag (OV) since this 

indicates if there is an error in the result of the addition. There are two rules for setting OV in signed number 

operation. The overflow flag is set to 1:  

• If there is a carry from D6 to D7 and no carry from D7 out.  

• If there is a carry from D7 out and no carry from D6 to D7.  

• Notice that if there is a carry both from D7 out and from D6 to D7, OV - 0.  

Example:  

MOV A,# + 8                    ;A= 0000 1000  

MOV Rl,#+4                     ;R1=0000 0100  

ADD A,R1                         ;A=0000 1100 OV=0,CY=0  

Notice that D7 = 0 since the result is positive and OV = 0 since there is neither a carry from D6 to D7 nor any 

carry beyond D7. Since OV = 0, the result is correct [(+8) + (+4) = (+12)].  

Example:  

MOV A, #+66                   ;A=0010  

MOV R1, #+4                   ;R4 = 0100 0101   

ADD A, R4                       ;A=10 00 0111 = -121 

                                          ;(INCORRECT) CY=0, D7=l, OV=l  

In the above example, the correct result is +135 [(+66) + (+69) = (+135)), but the result was -121. OV = 1 is an 

indication of this error. Notice that D7 = 1 since the result is negative; OV = 1 since there is a carry from D6 to 

D7 and CY = 0.  

Example:  

MOV A,#-126                              ; A = 1000 0010  

MOV R7,#-127                            ; R7=1000 0001  

ADD A,R7                                    ; A=0000 0011 (+3, wrong)  

                                                     ;D7=0, OV = 1 

CY = 1 since there is a carry from D7 out but no carry from D6 to D7.  

From the above discussion we conclude that while CY is important in any addition, OV is extremely important 

in signed number addition since it is used to indicate whether or not the result is valid. 

  



46 
 

ADDC A, source byte  

Function        : Add with carry  

Flags              : OV, AC, CY  

This will add the source byte to A, in addition to the CY flag (A = A + byte + CY). If CY = 1 prior to this 

instruction, CY is also added to A. If CY = 0 prior to the instruction, source is added to destination plus 0. This 

is used in multi byte additions. In the addition of 25F2H to 3189H, for example, we use the ADDC instruction 

as shown below.  

Example:  

CLR C                                   ; CY = 0  

MOV A, #89H                      ; A=89H  

ADDC A, #0F2H                  ; A = 89H+F2H+0=17BH, A = 7B, CY = 1  

MOV R3,A ; Save A  

MOV A, #31H   

ADDC A, #25H                    ; A= 31H+25H+1=57H  

Therefore the result is:  

25F2H   

+ 3199H  

577BH  

The addressing modes for ADDC are the same as for "ADD A, byte".  

AJMP target address  

Function        : Absolute jump  

Flag               : None  

AJMP stands for "absolute jump." It transfers program execution to the target address unconditionally. The 

target address for this instruction must be within 2K bytes of program memory.   

ANL dest-byte, source-byte  

Function       : Logical AND for byte variables  

Flags             : None affected  

 

 



47 
 

Example :  

MOV A, #32H          ; A=32H                    32  0011    0010  

MOV R4, #50H        ;R4=50H                    50  0101   0000  

ANL A, R4               ;(A=10H)                   10    001   0000  

For the ANL instruction there are a total of six addressing modes. In four of them, the accumulator must be the 

destination. They are as follows.  

1. Immediate ANL A, # data Example ANL A, #25H  

2. Register ANL A, Rn Example ANL A R3  

3. Direct ANL A, direct Example ANLA, 30H;   

4. Register – indirect : Example ANL A, @R0;   5. ANL direct/#data  

Example: Assume that RAM location 32H has the value 67H. Find its content after execution of the following 

code.  

ANL 32H,#44H   

44H  0100  0100  

67H  0110  0111  

44H  0100  0101 Therefore, it has 44H.  

ANL C, source-bit  

Function        :Logical AND for bit variable  

Flag               : CY  

In this instruction the carry flag bit is ANDed with a source bit and the result is placed in carry. Therefore, if 

source bit = 0, CY is cleared; otherwise, the CY flag remains unchanged.  

CJNE dest – byte, source – byte, target  

Function       : Compare and jump if not equal  

Flag              : CY  

The magnitudes of the source byte and destination byte are compared. If they are not equal, it jumps to the 

target address.  

Example : Keep monitoring P1 indefinitely for the value of 99H. Get out only when P1 has the value 99H.  

MOV Pl, OFFH          ;make Pl an input port  

Back MOV A, Pl         ; read Pl  



48 
 

CJNE A, #99, Back    ; keep monitoring  

Notice that CJNE jumps only for the not-equal value. To find out if it is greater or less after the comparison, we 

must check the CY flag. Notice also that the CJNE instruction affects the CY flag only, and after the jump to 

the target address the carry flag indicates which value is greater, as shown here.  

In the following example, Pl is read and compared with value 65. Then:       

                                          Dest<Source CY = 1  

                                          Dest>Source CY=0  

1. If Pl is equal to 65, the accumulator keeps the result.  

2. If Pl has a value less than 65, R2 has the result, and finally  

3. If Pl has a value greater than 65, it is kept by R3.  

At the end of the program, A will contain the equal value, or R2 the smaller value, or R3 the greater value.  

Example :  

MOV A, Pl                       ; Read Pl  

CJNE A, #65, NEXT        ; Is it 65  

SJMP EXIT                  ;yes,A keeps it,EXIT  

NEXT : JNC OVER      ; NO  

MOV R2, A                  ;Save the smaller in R2  

SJMP EXIT                  ;And EXIT  

OVER: MOV R3, A     ;Save the larger in R3  

EXIT :  

This instruction supports n four addressing modes. In two of them, A is the destination.  

1. Immediate          CJNE A, #data target  

Example:                CJNE A, #96, NEXT ;              JUMP IF A IS NOT 96  

2. Direct                 CJNE A, direct, target                   ;Jump If A Not  

                                                                                     ; with the value held by RAM LOC. 40H  

Notice the absence of the “#” sign in the above instruction. This indicates RAM location„40H. Notice in this 

mode that we can test the value at an input port. This is a widely used application of this instruction. See the 

following:  

 



49 
 

MOV PI, OFF                              ; PI is an input port  

MOV A, #10H                             ;A = 10H  

HERE:CJNE A, PI,HERE           ;WAIT HERE TIL PI = 10H  

In the third addressing mode, any register, RO - R7, can be the destination.  3. Register: CJNE Rn, #data, target  

         Example: CJNE R5,#70,NEXT         ;jump if R5 is not 70  

In the fourth addressing mode, any RAM location can be the destination. The RAM location is held by register 

ROorRl.  

4. Register-indirect: CJNE @ Ri, #data, target  

           Example: CJNE @R1, #80, NEXT          ; jump if RAM  

                                           ;location whose address is held by Rl   

              ; is not equal to 80  

Notice that the target address can be no more than 128 bytes backward or 127 bytes forward, since it is a 2-byte 

instruction.   

CLR A  

Function    :   Clear accumulator  

Flag           :     None are affected  

This instruction clears register A. All bits of the accumulator are set to 0.  

CLR bit  

Function  : Clear bit  

This instruction clears a single bit. The bit can be the carry flag, or any bit –  

addressable location in the 8051. Here are some examples of its format:  

CLR C              ;CY=0  

CLR P2.4          ;CLEAR P2.4 (P2.4=0)  

CLR Pl.7           ;CLEAR P1.7 (P1. 7=0)  

LR ACC.7          ; CLEAR D7 of ACCUMULATOR (ACC. 7=0)   

 

 

 



50 
 

CPL A  

Function: Complement accumulator  

Flags: None are affected  

This complements the contents of register A, the accumulator. The result is the l's complement of the 

accumulator. That is: 0s become 1s and 1s become 0s.  

Example:  

MOV A, #55H               ; A=01010101  

AGAIN :CPL A             ; compliment reg. A  

MOV P1, A                    ; toggle bits of Pl  

SJMP AGAIN                ;Continuously  

CPL bit  

Function : Complement bit  

This instruction complements a single bit. The bit can be any bit-addressable location in the 8051.  

Example:  

SETB P1. O                 ;set PI.0 high  

AGAIN: CPL PI. 0       ;complement port. bit  

SJMP AGAIN              ;continuously  

D AA  

Function       : Decimal-adjust accumulator after addition  

Flags             :     CY  

This instruction is used after addition of BCD numbers to convert the result back to BCD. The data is adjusted 

in the following two possible cases.  

1. It adds 6 to the lower 4 bits of A if it is greater than 9 or if AC = 1.  

2. It also adds 6 to the upper 4 bits of A if it is greater than 9 or if CY = 1.  

Example  

MOV A, # 47H           ; A=0100 0111  

ADD A, #38H             ;A=47H+38H=7FH, invalid BCD  

DA A                           ;A=1000 0101=85H, valid BCD  



51 
 

  47H  

+38H  

  7FH        (invalid BCD)  

  +6H        (after DA A)  

  85H        (valid BCD)  

In the above example, since the lower nibble was greater than 9, DAA added 6 to A. If the lower nibble is less 

than 9 but AC = 1, it also adds 6 to the lower nibble. See the following example.  

Example:  

MOV A,#29H                   ;A=0010 1001  

ADD A,#18H                    ;A= 0100 0001 INCORRECT  

DA A ;A= 0100 0111 = 47H VALID BCD  

29H   

+ 18H  

41H (incorrect result in BCD)  

+6H  

 47H correct result in BCD  

The same thing can happen for the upper nibble. See the following example. Example:  

MOV A,#52H                ;A=0101 0010  

ADD A, #91H                ;A=1110 0011 Invalid BCD 1001 0001  

DA A                             ;A=0100 0011 AND CY = 1  

52H   

+ 91H  

E3H (invalid BCD)  

+ 6 (after DA A, adding toupper nibble)  

143H valid BCD  

Similarly, if the upper rubble is less than 9 and CY = 1, it must be corrected. See the following example.  

 

 



52 
 

Example:  

MOV A, #54H              ;A= 0101 0100  

ADD A, #87H               ;A=1101 1011 INVALID BCD   

DA A                             ;A=0100 0001, CY=1 (BCD 141)  

DEC byte  

Function     :    Decrement  

Flags           : None  

This instruction subtracts 1 from the byte operand. Note that CY (carry/borrow) is unchanged even if a value 00 

is decremented and becomes FF. This instruction supports four addressing modes.  

1. Accumulator DEC A Example : DEC A  

2. Register DEC Rn Example : DEC R1 or DEC R3 3. Direct : DEC direct Example : DEC 40H  

4. Register-indirect: DEC@Ri ;where i=0 or 1 only  

;Example :DEC @R0  

DIV AB  

Function   :  Divide  

Flags CY and OV  

This instruction diveds a byte in accumulator by the byte in register. B. It is assumed that both registers A and 

B contain an unsigned byte.After the division, the quotient will be in register A and the remainder in register B. 

If you divide by zero (that is, set register B = 0 before the execution of “DIV AB” the values in register A and 

B are undefined and the OV flag is set to high to indicate in invalid result. Notice that CY is always 0 in this 

instruction.  

Example:  

MOV A,#35   

MOV B, #10   

DIV AB                 ;A=3 and B=5  

Notice in this instruction that the carry and OV flags are both cleared, unless we divide A by 0, in which case 

the result is invalid and OV = 1 to indicate the invalid condition.  

 

 

 



53 
 

DJNZ byte, target  

Function: Decrement and jump if not zero  

Flags: None  

In this instruction a byte is decremented, and if the result is not zero it will, jump jo the target address.   

Example: Count from 1 to 20 and send the count to PI.  

CLR A ;A=0  

MOV R2,#20 ;R2=20 counter  

BACK: INC A  

MOV PI, A   

DJNZ R2, BACK ; repeat if R2 not = zero  

The following two formats are supported by this instruction  

1. Register : DJNZ Rn, target (where n = 0 to 7) Example DJNZ R3, Here 

2. Direct : DJNZ direct, target  

Notice that the target address can be no more than 128 bytes backward or 127 bytes forward, since it is a 2-byte 

instruction.  

INC byte  

Function       : Increment  

Flags             : None  

This instruction adds 1 to the register or memory location specified by the operand. Note that CY is not 

affected even if value FF is incremented to 00. This instruction supports four addressing modes.  

Accumulator            : INC A             Example: INC A  

Register:                    INC Rn            Example: INC R1 or INC R5 INC Direct:                         

Example:         

INC 30H  

Register-indirect: INC @Ri(i=0or1) Example: INC @R0 ; 46 

INC DPTR  

Function: Increment data pointer  

Flags: None  



54 
 

This instruction increments the 16-bit register DPTR (data pointer) by 1. Notice that DPTR is the only 16-bit 

register that can be incremented. Also notice that there is no decrement version of this instruction.  

Example:  

MOV         DPTR,#16FFH         ;DPTR=16FFH  

INC            DPTR                        ; now DPTR=1700H  

JB bit,target also: JNB bit,target  

Function: Jump if bit set Jump if bit not set  

Flags: None  

These instructions are used to monitor a given bit and jump to a target address if a given bit is high or low. In 

the case of JB, if the bit is high it will jump, while for JNB if the bit is low it will jump. The given bit can be 

any of the bit- addressable bits of RAM, ports, or registers of the 8051.  

Example: Monitor bit P1.5 continously. When it becomes low, send 55H to P2.  

SETB PI.5                         ;make PI.5 an input bit  

HERE:JB PI. 5, HERE      ;stay here as long as PI. 5=1  

MOV P2,#55H                   ; since PI.5=0 send 55H to P2  

JNB ACC. 0, NEXT           ;jump if DO is 0 (even)  

INC A                                  ;D0-1, make it even  

NEXT:  

JBC bit,target  

Function: Jump if bit is set and clear bit  

Flags: None  

If the desired bit is high it will jump to the target address; at the same time the bit is cleared to zero.  

Example: The following instruction will jump to label NEXT if D7 of register A is high; at the same time D7 is 

cleared to zero.  

JBC      ACC.7,NEXT  

MOV    PI,A  

NEXT:  

Notice that the target address can be no more than 128 bytes backward or 127 bytes forward since it is a 2-byte 

instruction.   

 



55 
 

 

JC target  

Function: Jump if CY = 1.  

Flags: None  

This instruction examines the CY flag; if it is high, it will jump to the target address.  

JMP @A+DPTR  

Function: Jump indirect  

Flags: None  

The JMP instruction is an unconditional jump to a target address.   

The target address is provided by the total sum of register A and the DPTR register. Since this is not a widely 

used instruction, we will bypass further discussion of it.  

JNB bit, target  

See JB and JNB.  

JNC target  

Function: Jump if no carry (CY = 0)  

Flags: None  

JNZ target  

Function: Jump if accumulator is not zero  

Flags: None  

This instruction jumps if register A has a value other than zero.  

JZ target  

Function: Jump if A =zero  

Flags: None  

This instruction examines the contents of the accumulator and jumps if it has value 0.  

Notice that this is a 2-byte instruction; therefore, the target address cannot be more than-128 to +127 bytes 

away, from the program counter. See J condition for further discussion on this.  

 

 



56 
 

J condition target  

Function: Conditional jump  

In this type of jump, control is transferred to a target address if certain conditions are met. The target address 

cannot be more than -128 to +127 bytes away from the current PC (program counter).  

JC                Jump carry                         jump if CY = 1  

JNC             Jump no carry                     jump if CY = 0  

JZ                Jump zero                           jump if register A = 0  

JNZ             Jump no zero                      jump if register A.is not 0  

JNB bit         Jump no bit                        jump if bit = 0  

JB bit            Jump bit                             jump if bit = 3  

JBC bit         Jump bit clear bit                jump if bit = 1 and clear bit  

DJNZ Rn,... Decrement and jump if not zero  

CJNE A,#val,... Compare A with value and jump if not equal  

LCALL 16-bit addr  

Function: Transfers control to a subroutine   

Flags-. None  

There are two types of CALLs: ACALL and LCALL. In ACALL, the target address is within 2K bytes of the 

current PC (program counter). To reach the target address in the 64K bytes maximum ROM space of the 8051, 

we must use LCALL. If calling a subroutine, the PC register (which has the address of the instruction after the 

ACALL) is pushed onto the stack, and the stack pointer (SP) is incremented by 2. Then the program counter is 

loaded with the new address and control is transferred to the subroutine. At the end of the procedure, when 

RET is executed, PC is popped off the stack, which returns control to the instruction after the CALL.  

Notice that LCALL is a 3-byte instruction, in which one byte is the opcode, and the other two bytes are the 16-

bit address of the target subroutine. ACALL is a 2-byte instruction, in which 5 bits are used for the opcode and 

the remaining 11 bits are used for the target subroutine address. An 11-bit address limits the range to 2K bytes.  

LJMP 16-bit addr  

Function: Transfers control unconditionally to a new address.  

In the 8051 there are two unconditional jumps: LJMP (long jump) and SJMP (short jump). Each is described 

next.  

1. LJMP (long jump): This is a 3-byte instruction. The first byte is the opcode and the next two bytes are the 

target address. As a result, LJMP is used to jump to any address location within the 64K-byte code space of the 



57 
 

8051. Notice that the difference between LIMP and LCALL is that the CALL instruction will return and 

continue execution with the instruction following the CALL, whereas JMP will not return.  

 

2. SJMP (short jump): This is a 2-byte instruction. The first byte is the opcode and the second byte is the signed 

number displacement, which is added to the PC (program counter) of the instruction following the SJMP to get 

the target address. Therefore, in this jump the target address must be within -128 to +127 bytes of the PC 

(program counter) of the instruction after the SJMP since-a single byte of address can take values of +127 to —

128. This address is often referred to as relative address since the target address is -128 to +127 bytes relative 

to the program counter (PC). In this Appendix, we have used the term target address in place of relative address 

only for the sake of simplicity.  

MOV dest-byte/source-byte  

Function: Move byte variable Flags: None  

This copies a byte from the source location to the destination. There are fifteen possible combinations for this 

instruction. They are as follows:  

(a) Register A as the destination. This can have the following formats.  

MOV A,#data Example: MOVA,#25H ;(A=25H)  

MOV A,Rn Example: MOV A,R3  

MOV A,direct Example: MOV A, 3 OH ;A= data in 3OH  

MOV A,@Ri (i=0 or 1)Examples: MOV A, @RO  

Notice that "MOV A, A" is invalid.  

(b) Register A is the source. The destination can take the following forms  

             5.       MOV Rn. A  

             6.       MOV direct, A  

             7.       MOV @Ri.A  

(c )  Rn is the destination  

        8. MOV Rn, # immendiate  

        9. MOV Rn, A  

        10. MOV Rn, direct  

(d) The destination is a direct address  

11. MOV direct, # data  

12. MOV direct, @Ri  



58 
 

13. MOV direct, A  

14. MOV direct , Rn  

15. MOV direct, direct  

(e) Destination is an indirect address held by R0 or R1  

16. MOV @ Ri #data  

17. MOV @ Ri, A  

18. MOV @Ri direct  

MOV dest – bit, source – bit  

Function : Move bit data  

This MOV instruction copies the source bit to the destination bit. In this instruction one of the operands must 

be the CY flag. Look at the following examples.  

MOV P1. 2, C        ;Copy carry bit to port bit Pl.2  

MOV C, P2.5         ;copy port bit P2.5 to carry bit  

MOV DPTR, #16 – bit value  

Function : Load data pointer  

Flags : None  

This instruction loads the 16-bit DPTR (data pointer) register with a 16-bit immediate value Examples  

MOV DPTR, # 456FH              ;DPTR-456FH  

MOV C A ,@A+DPTR  

Function : Move code byte  

Flags : None  

This instruction moves a byte of data located in program (code) ROM into register A. This allows us to put 

strings of data, such as look-up table elements, in the code space and read them into the CPU. The address of 

the desired byte in the code space (on-chip ROM) is formed by adding the original value of the accumulator to 

the 16-bit DPTR register.  

MOVC A,@A+PC  

Function: Move code byte  

Flags: None  

 



59 
 

This instruction moves a byte of data located in the program (code) area to A. The address of the desired byte 

of data is formed by adding the program counter (PC) register to the original value of the accumulator. Contrast 

this instruction with "MOVC A, @A+DPTR". Here the PC is used instead of DPTR to generate the data 

address.  

MOVX dest-byte, source-byte  

Function: Move external  

Flags: None  

This instruction transfers data between external memory and register A.  Example MOVX A,@DPTR  

This moves into the accumulator a byte from external memory whose address is pointed to by DPTR. In other 

words, this brings data into the CPU (register A) from the off-chip memory of the 8051.  

MOVX @DPTR,A  

This moves the contents of the accumulator to the external memory location whose address is held by DPTR. In 

other words, this takes data from inside the CPU (register A) to memory outside the 8051.  

(a) The 8-bit address of external memory is held by RO or Rl.  

MOVX A, @Ri ;wherei = 0 or 1  

This moves to the accumulator a byte from external memory whose 8-bit address is pointed to by RO (or Rl in 

MOVX A,@R1).  

MOVX @Ri,A  

This moves a byte from register A to an external memory location whose 8-bit address is held by R0(or R1 in 

MOVX @R1.A)  

The16-bit address version of this instruction is widely used to access external memory while the 8-bit version is 

used to access external 1/O ports.  

MUL AB  

Function: Multiply AxB  

Flags: OV, CY  

This multiplies an unsigned byte in A by an unsigned byte in register B. The result is placed in A and B where 

A has the lower byte and B has the higher byte.  

Example:  

MOV A, #5   

MOV B,#7  

MUL AB ;A=35=23H, B=00  



60 
 

NOP  

Function: No operation  

Flags: None  

This performs no operation and execution continues with the next instruction. It is sometimes used for timing 

delays to waste clock cycles. This instruction only updates the PC (program counter) to point to the next 

instruction following NOP.  

ORL dest-byte,source-byte  

Function: Logical OR for byte variable  

Flags: None  

This performs a logical OR on the byte operands,   

bit by bit, and stores the result in the destination.  

For the ORL instruction there are a total of six addressing modes. In four of them the accumulator must be the 

destination. They are as follows:  

1. Immediate: ORL A,#data             Example: ORL A,#25H  

2. Register: ORL A,Rx                     Example: ORL A, R3  

3. Direct: ORL A,direct                    Example: ORL A, 30H;  

4. Register-Indirect: ORL A,@Rn    Example: ORL A,@R0   

In the next two addressing modes the destination is a direct address (a RAM location or one of the SFR 

registers), while the source is either A or immediate data as shown below: 

 5. ORL direct,“data”  

Example: Assuming that RAM location 32H has the value 67H, find the content of A after the following:  

ORL 32H,#44H ;OR 44H with contents of RAM 1oc. 32H  

MOV A, 32H ;move content of RAM loc. 32H to A  

  6. ORL direct,A  

ORL C, source-bit  

Function: Logical OR for bit variables   

Flags: CY  

In this instruction the carry flag bit is ORed with a source bit and the result is placed in the carry flag. 

Therefore, if the source bit is 1, CY is set; otherwise, the CY flag remains unchanged.  

 



61 
 

POP direct  

Function: Pop from the stack  

Flags: None  

This copies the byte pointed to by SP (stack pointer) to the location whose direct address is indicated, and 

decrements SP by 1. Notice that this instruction supports only direct addressing mode. Therefore, instructions 

such as "POP A" or "POP R3 " are illegal. Instead we must write "POP OEOH" where EOH is the RAM 

address belonging to register A and "POP 03 " where 03 is the RAM address of R3 of bank 0.  

PUSH direct  

Function: Push onto the stack  

Flags: None  

This copies the indicated byte onto the stack and increments SP'by 1. Notice that this instruction supports only 

direct addressing mode. Therefore, instructions such as "PUSH A" or "PUSH R3" are illegal. Instead, we must 

write "PUSH OEOH" where EOH is the RAM address belonging to register A and "PUSH 03 " where 03 is the 

RAM address. of R3 of bank 0.  

RET  

Function: Return from subroutine  

Flags: None  

This instruction is used to return from a subroutine previously entered by instructions LCALL or ACALL. The 

top two bytes of the stack are popped into the program counter (PC) and program execution continues at this 

new address. After popping the top two bytes of the stack into the program counter, the stack pointer (SP) is 

decremented by 2.  

RFTI  

Function: Return from interrupt  

Flags: None  

This is used at the end of an interrupt service routine (interrupt handler). The top two bytes of the stack are 

popped into the program counter and program execution continues at this new address. After popping the top 

two bytes of the stack into the program counter (PC), the stack pointer (SP) is decremented by 2.  

RL A  

Function: Rotate left the accumulator  

Flags: None  

This rotates the bits of A left. The bits rotated out of A are rotated back into A at the opposite end.   

 



62 
 

Example:  

MOV A, #69H            ; A=01101001  

RL A                            ; Now A=11010010  

RL A                             ; Now A = 10100101  

RLC A  

Function: Rotate A left through carry  

Flags: CY  

This rotates the bits of the accumulator left. The bits rotated out of register A are rotated into CY, and the CY 

bit is rotated into the opposite end of the accumulator.  

Example:  

CLR C                 ;CY=0  

MOV A, #99H     ;A-10011001  

RL A                    ; Now A=00110010 and CY=1  

RL A                    ; Now A=10100101  

RLC A  

Function: Rotate A right  

Flags: None  

This rotates the bits of register A right. The bits rotated out of A are rotated back into A at the opposite end.   

Example:  

Now A #66H       ; A=01100110  

RR A                    ;Now A=00110011  

RR A                    ;Now A=10011001  

RRC A  

Function:Rotate A right through carry  

Flags: CY  

This rotates the bits of the accumulator right. The bits rotated out of register A are rotated into CY and the CY 

bit is rotated into the opposite end of the accumulator.  

 



63 
 

 

SETB bit  

Function: Set bit  

This sets high the indicated bit. The bit can be the carry or any directly addressable bit of a port, register, or 

RAM location.  

Examples :  

SETB Pl.3          ; pl. 3=1  

SETB P2.6         ;P2.6=1  

SETB ACC.6      ;ACC, 6=1  

SETB 05          ;Set high D5 of RAM loc. 20H  

SETB C            ; Set carry Flag CY = 1  

SJMP  

See LJMP & SJMP.  

SUBB A, source byte  

Function: Subtract with borrow  

Flags: OV, AC, CY  

This subtracts the source byte and the carry flag from the accumulator and puts the result in the accumulator; 

The steps for subtraction performed by the internal hardware of the CPU are as follows:  

1. Take the 2's complement of the source byte.  

2. Add this to register A,  

3. Invert the carry.  

This instruction sets the carry flag according to the following:  

Dest> source 0 the result is positive   

Dest=source 0 the result is 0  

Dest<source 1 the result is negative in 2's complement  

Notice that there is no SUB instruction in the 8051. Therefore, we perform the SUB instruction by making CY 

= 0 and then using SUBB: A = (A- byte - CY).  

Addressing Modes  

The following four addressing modes are supported for the SUBB  



64 
 

1. Immediate SUBB A, # data Example : SUBB A, #25H ;A=A-25H-CY 2. Register SUBB A, Rn Example : 

SUBB A, R3 ;A=A-R3-CY 3. Direct : SUBB A, direct Example : SUBB A, 30H ;A=data at (30H)-CY 4. 

Register-indirect : SUBB A, @ Rn Example : SUBB A, @R0 A=data at (R0)-CY  

SWAP A  

Function : Swap nibbles within the accumulator  

Flags : None  

The SWAP instruction interchange the lower ribble (D0-D3) with the upper ribble (D4-D7) inside register A.  

Example  

MOV A, #59H              ;A=59H (0101 1001 in binary)  

SWAP A                       ;A=95H (1001 0101 in binary)  

XCH A, Byte  

Function : Exchange A with a byte variable  

Flags : None  

This instruction swaps the contents of register A and the source byte. The source byte can be any register or 

RAM location.  

Example   

MOV A, #65H                 ;A=65H  

MOV R2, #97H                ;R2=97H  

XCH A, R2                       ;Now A=97H and R2=65H  

For the “XCHA, byte’ instruction there are a total of three addressing modes. They are as follows  

1. Register          XCH A, Rn Example XCH A, R3  

2. Direct           XCH A, direct; Example XCH A, 40H Register  

3. Indirect: XCH A, @ Rn;Examples XCH A @R0 ;  

XCHD A, @R1  

Function : Exchange digits  

Flags: None  

The XCHD instruction exchanges only the lower ribble of A with the lower ribble of the Ram location pointed 

to by Ri while leaving the upper ribbles in both places intact. Example : Assuming RAM location 40H has the 

value 97H find its content after the following instructions.  

 



65 
 

40H = (97H)  

MOV A, #12H        ;A = 12H (0001 0010 binary)  

MOV R1 #40H       ;R1=40H, load pointer  

XCHD A @R1        ;exchange the lower nibble of  

                                 ; A and RAM location 40H  

After execution of the XCHD instruction, we have A = 17H and RAM location 40H has 92H.  

XRL dest-byte,source-byte  

Function:Logical exclusive-OR for byte variables  

Flags: None  

This performs a logical exclusive-OR on the operands, bit by bit, storing the result in the destination.   

Example:  

MOV A,#39H          ; A = 39H  

XRL A,#09H           ; A = 39H ORed with 09  

39H 0011 1001  

 09H 0000 1001  

30 0011 0000  

For the XRL instruction there are total of six addressing modes. In four of them the accumulator must be the 

destination. They are as follows:  

1. Immediate:             XRL A,"data:”          Example: XRL A,#25H  

2. Register:                 XRL A,Rn                Example: XRL A,R3  

3. Direct:                    XRL A,direct            ;XRL A with data in RAM location 3OH ;  

4. Register-indirect    XRL A,@Rn             ;Example: XRL A,@R0  

                                                                     ;XRL A with data pointed to by RO  

In the next two addressing modes the destination is a direct address (a RAM location or one of the SFR 

registers) while the source is either A or immediate data as shown below:  

5. XRL direct,#data  

Example: Assume that RAM location 32H has the value 67H.  

Find the content of A after execution of the following code.  



66 
 

XRL 32H,#44H ;move content of RAM loc . 3 2H • to A  

MOV A, 32H  

44H   0100  0100  

67H   0110  0111  

23H   0010   0011   Therefore A will have 23H. 

 


