LABORATORY MANUAL

of
UCEST105: ALGORITHMIC THINKING WITH PYTHON (S1)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COLLEGE OF ENGINEERING

TRIVANDRUM

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COLLEGE OF ENGINEERING

TRIVANDRUM

CERTIFICATE

This is a controlled document of the department of Electronics and Communication
Engineering of the College of Engineering, Trivandrum. No part of this can be reproduced
in any form by any means without the prior written permission of the Head of the
Department, Electronics and Communication Engineering, College of Engineering,
Trivandrum. This is prepared as per 2024 KTU B.Tech scheme.

UCEST105:

Python

Algorithmic Thinking with

Course Code UCEST105 CIE Marks 40
Teaching Hours/Week 049

(L: T:P: R) 3:0:2:0 ESE Marks 60
Credits 4 Exam Hours 2 Hrs. 30 Min.
Prerequisites (if any) None Course Type Theory

Course Objectives:

e To provide students with a thorough understanding of algorithmie thinking and its
practical applications in solving real-world problems..

e To explore various algorithmic paradigms, including brute force, divide-and-conquer,
dynamic programming, and heuristics, in addressing and solving complex problems.

Course Qutcomes

present a course project that demonstrates algorithmic thinking
and problem-solving using Python.

CO# | Description K-Level

CO1 | Develop algorithmic thinking to analyze problems and implement K3
step-by-step computational solutions using Python.

CO2 | Represent algorithms using pseudocode and flowcharts, and analyze | K4
their efficiency to select appropriate solutions for a given problem.

CO3 | Design modular programs using functions and data abstraction K3
principles for real-world applications.

CO4 | Develop programs to implement common algorithms such as search- K3
ing, sorting, recursion, and data manipulation using Python.

CO5 | Collaborate effectively in teams to plan, implement, test, and K4

Contents (with COs)

Experiment Page | COs
Experiment 1: Getting Started, Input/Output, and Expressions 3 COo1
Experiment 2: Variables, Data Types, and Operators 5 COo1
Experiment 3: Selection (if/elif/else) and Simple Programs 8 CO2
Experiment 4: Loops (for, while), Ranges, and Patterns 11 CO2
Experiment 5: Functions, Parameters, Return Values, and Testing 14 CO3
Experiment 6: Strings Deep Dive (Indexing, Slicing, Methods, For- 17 CO3
matting)

Experiment 7: Lists and Tuples (Slicing, Methods, Comprehen- 20 CO3
sions)

Experiment 8: Dictionaries and Sets (Mapping and Membership) 23 CO4
Experiment 9: Files and Exceptions (Text, CSV-like, JSON-like) 26 CO4
Experiment 10: Simple Project with Modules and Classes 29 CO5

Experiment 1: Getting Started, Input/Output, and
Expressions

Aim

Install Python 3, confirm the environment setup, and master fundamental concepts of
variables, user input, standard output, and basic arithmetic expressions, including type
conversion.

Theory

A computer program is a finite sequence of instructions designed to perform a specified
task. In Python, execution follows a sequential flow model, where statements are
processed from top to bottom.

Variables and Dynamic Typing: Python variables are svmbolic names that refer
to objects in memory. Unlike static languages, Pvthon uses dynamic typing, meaning
the tvpe of a variable is inferred at runtime and can change during execution.

Input and Type Casting: The built-in function input () is the standard mechanism
for receiving user data. Crucially, input () always returns the data as a string (str) type.
To perform numeric calculations, explicit type casting is required using functions like
int () (for integers) or float() (for floating-point numbers). Failure to cast will result
in string concatenation or TypeError.

Output and Formatting: The print () function sends data to the standard output
stream. Formatted String Literals (f-strings) provide a concise, readable syntax for
embedding expressions inside string constants. F-strings support format specifiers
(e.g., :.2f) to control precision, alignment, and representation of numeric outputs.

Arithmetic Expressions: Pvthon supports standard arithmetic operators (+, -,
*, /). The division operator (/) always vields a float, even if the result is an integer.

Design & Implementation
1. Verify Python 3.11 | is installed via python -version in the terminal.

2. Use the interactive shell (python or python3) for testing quick expressions (e.g., 9/5
* 32 + 32).

3. Write and execute the initial scripts: hello.py, simple_calc.py, circle_area.py,
and temp_convert.py.

4. New Program: Implement bmi_calc.py to compute the Body Mass Index (BMTI).

Code (Python)

hello.py
print ("Hello, UCEST105!")

simple_calc.py (Demonstrates all four basic arithmetic
operations)

a = float(input("Enter first number: "))

10

11

12

20

21

22

23

24

b = float{(input("Enter second number: "))
print (f"sum={a+b} diff={a-b} prod={a*b} quot={a/b:.4f}")

circle_area.py (Using a constant for PI)

r = float{(input ("Radius: "))

PI = 3.141592653589793 # Conwentzonally, constants are wn CAPITALS
area = PI *x r * r

print (f"Area of circle with r={r} is {area:.4f1}")

temp_convert.py (Fahrenheit = 9/5 ¢ + 32)
c float (input ("Celsius: "))

f = 9/5 x ¢ + 32

print (f"{c:.1f} C is {f:.1f} F")

bmi_calc.py (BMI = weight (kg) / (height (m) #** 2))
weight_kg = float(input ("Enter weight (kg): "))

height_m = float(input{("Enter height (m): "))

bmi = weight_kg / C(height_m x** 2)

print (f"Weight: {weight_kg:.1f}kg, Height: {height_m:.2f}nm")
print (£"BMI is: {bmi:.2f}")

Results

Execution must confirm both raw computation and presentation control. The simple_calc
and bmi_calc programs are critical for verifving correct type conversion.

Table 2: Summary of Experiment 1 Results

Program Input Example Observed Output Concept Verified
simple_calc.py a—10, b—4 sum—14.0 diff=6.0 prod—40.0 quot—2.5000 float () conversion, division
circle_area.py Radius: 5.0 Area of circle with r—5.0 is 78.5398 Use of constants, :.4f formatting
temp_convert.py Celsius: 20 20.0 Cis 68.0 F Mathematical expression order
bmi_calc.py Weight: 70, Height: 1.75 BMI is: 22.86 Exponent operator (**)

Analysis & Inference

All user input is initially a string; using float () ensures the integrity of decimal calcu-
lations. The f-string mechanism provides precise control over the output, as demon-
strated by rounding the BMI to two decimal places (:.2f). Failure to convert input
would result in concatenation (e.g., "10" + "4" becoming "104") or a TypeError.

Conclusion

The Python environment is successfully configured. Core concepts of basic 1/0, variable
assignment, and explicit type casting for arithmetic operations have been understood and
verified.

Experiment 2: Variables, Data Types, and Operators

Aim

Differentiate between Python’s core data types (int, float, str, bool), and practice all
major operator groups: arithmetic, comparison, logical, and augmented assignment.

Theory

Pyvthon supports several fundamental data tvpes. The int type provides arbitrary-
precision integers, meaning thev can store numbers limited only by available memory,
unlike fixed-size integers in many other languages. The float type corresponds to IEEE
754 double-precision floating-point numbers.

String Type (str): Strings are immutable sequences of Unicode characters. They
support indexing (accessing a single character by position, starting from 0) and negative
indexing (starting from -1 for the last character).

Arithmetic Operators: In addition to basic operations, Pyvthon includes:

¢ Floor Division (//): Divides and rounds the result down to the nearest integer
toward negative infinity.

e Modulo (%): Returns the remainder of the division. The sign of the result is the
same as the divisor.

¢ Exponentiation ():** Raises the first operand to the power of the second.

Logical Operators: The and, or, and not operators are used to combine boolean
values or expressions, crucial for constructing complex control flow conditions. Python
also supports chained comparisons (e.g., a < b < ¢), which is equivalent to (a < b)
and (b < ¢).

Augmented Assignment Operators: Shorthand operators like +=, -=, #= update
a variable by performing an operation on its current value. For example, x += 5 is
equivalent to x = x + b.

Design & Implementation
Write a single script to perform the following demonstrations:

1. Read two numbers and contrast standard division (/) with floor division (//) and
modulo (%).

Lo

Read a word, display its length, first character (s[0]), last character (s[-1]), repeti-
tion (s * 3), and concatenation.

3. Test boolean expressions, including the use of not and chained comparisons (e.g., 1 <
x < 10).

4. Demonstrate an augmented assignment operator (+=) for an accumulator.

Ut

Code (Python)

va

X float (input ("x: "))

y = float{(input("y: "))

print ("\n--- Arithmetic Operators ---")
print (f"x/y (Standard Division): {x/y:.2f}")
print(f"x//y (Floor Division): {x//y}")
print (£"x%y (Modulo/Remainder): {x%yl}")
print (f"x**xy (Exponent): {x*xx*xy}")

s = input("\nEnter a word: ")
t = input("Enter another word: ")
print ("\n--- String Operations ---")

print (f"Length of ’{s}’: {len(s)}")

print (f"First char (s[0]): {s[0]}, Last char (s[-11): {s[-113}")
print (f"Repetition (s * 3): {s * 3}")

print (f"Concatenation: {s + t}")

n = int(input("\nEnter an integer for logic checks: "))
is_positive = n > 0

ig_multiple_of_5 = n % 5 == 0

print ("\n--- Boolean and Comparison Operators ---")

print (f"Is {n} positive AND a multiple of 57 {is_positive and
is_multiple_of_53}")

print (£"Is {n} NOT a multiple of 37 {mot (n % 3 == 0)}")

print (f"Is 0 < n < 1007 {0 < n < 100}") # Chained comparison

Augmented asstgnment demonstration
total_sum = 10

print (f"\nInitial total: {total_sum}")
total_sum += 5

print (f"Total after += 5: {total_sum}")
total_sum *= 2

print (f"Total after *= 2: {total_sum}")

Results

The execution should clearly distinguish the behavior of division operators and confirm
the flexibility of string indexing and the power of logical operators.

Table 3: Kev Results from Operator Demonstration

Operation Input Example Result Inference

x=10, y=3 x//y 3.0 Floor division discards the fractional part.

String Indexing word="Python" P.n Indexing starts at 0; negative index is relative to the end.
Logical Test n=15 True and requires both conditions to be true.

Chained Comparison n=15 True 0 < 15 < 100 is syntactically valid and clean.
Augmented Assign Initial 10 30.0 +=is a shorthand for total_sum = total_sum + 5.

Analysis & Inference

The behavior of // (floor division) toward negative infinity should be noted, though often
irrelevant for positive numbers. Strings are sequences that support powerful indexing;
s[-1] is a common idiomatic way to get the last element. The and and or operators
allow programmers to create conditions that accurately model real-world requirements.
The successtul demonstration of augmented assignment confirms its utility in loop-based
tasks.

Conclusion

All major Python data types and operator groups are effectively utilized. A foundational
understanding of numerical precision, string sequence properties, and logical flow control
is established.

Experiment 3: Selection (if/elif/else) and Simple
Programs

Aim

Practice constructing control flow logic using if, elif, and else statements to implement
decision-making algorithms based on input conditions.

Theory

Control Flow: Programs rarely execute in a straight line. Selection (or branching) is
a fundamental control structure that determines which block of code should be executed
based on the truth value of a condition.

The if/elif/else Construct:

e if: Evaluates the primarv condition. If true, the associated code block is executed,
and the interpreter skips the rest of the elif/else chain.

e clif (Else If): Provides an alternative condition. It is checked only if all preceding
if and elif conditions were false. This structure guarantees that only one block
in the entire chain will execute.

e e¢lse: The default block. Tt executes only if all preceding if and elif conditions
are false.

Indentation: Pyvthon uses indentation (typically four spaces) to define code blocks,
including those associated with if/elif/else. This is mandatory and ensures structural
clarity.

Algorithmic Importance of Order: When checking overlapping conditions {e.g.,
grade ranges), the conditions must be ordered carefully (e.g.. from highest score range to
lowest) to ensure the logic is correctly applied and the most specific condition is checked
first.

Design & Implementation

Write one script containing the three specified tasks and a new task:

1. Grade Calculator: Ensure elif conditions are ordered from highest to lowest score
to correctly assign grades based on overlapping ranges.

2. Leap Year Test: Implement the full Gregorian calendar rule using a single, clear
compound boolean expression: a vear is a leap vear if it 1s divisible by 400, OR if it is
divisible by 4 AND not divisible by 100.

3. Largest of Three Numbers: Find the maximum value using a sequence of if
statements, which is a simple form of comparative sorting.

4. New Program: check_triangle.py - Determine if three sides form a triangle and
classifv it (Equilateral, Tsosceles, Scalene). This requires checking the Triangle In-
equality Theorem (a+b > ¢, a+c¢>b, and b+ ¢ > a) first.

10

11

12

13

15

16

17

20

21

22

23

24

25

26

27

28

29

30

31

32

35

36

37

38

Code (Python)

grade (Order matters: check highest score first)
m = float{(input("Marks (0-100): "))

if m >= 90: g = "A"
elif m >= 80: g = "B"
elif m >= 70: g = "C"
elif m >= 60: g = "D"
else: g = "F"

print ("Grade:", g)

leap year (Compound condition)

y = int(input("VYear: "))

is_leap = (y % 400 == 0) or ({y % 4 == 0) and (y % 100 != 0))
print (f"Year {y} is a Leap year: {is_leapl}")

largest of three (Sequential comparison)
a = float{(input("a: ")); b = float{(input("b: ")); ¢ = float(input(

"C: II))
largest = a
if b > largest: largest = b
if ¢ > largest: largest = ¢ # lote: lNo ’elif’ needed here as we

want to check C regardless
print ("Largest:", largest)

triangle classtification

print ("\n--- Triangle Classifier ---")
s1 = float (input("Side 1: "))

s2 float (input ("Side 2: "))

s3 float (input ("Side 3: "))

1. Check Triangle Inequality Theorem

if s1 + 82 > s3 and s1 + 83 > s2 and s2 + 83 > sl:
print ("These sides CAN form a triangle.")

2. (Classtfrcation

if s1 == 52 and s2 == s3:
print("Classification: Equilateral (All sides equal)")
elif sl == s2 or s2 == s3 or sl == s3:

print ("Classification: Isosceles (Two sides equal)")

else:
print ("Classification: Scalene (No sides equal)")
else:
print ("These sides CANNOT form a triangle (Fails Triangle
Inequality).")
Results

Testing with boundary and negative cases verifies the robustness of the conditional logic.

Table 4: Test Cases for Selection Logic

Algorithm Input Expected/Observed Outcome Logic Verified

Grade Cale. Marks: 89.5 B elif execution order

Leap Year 1900 False (y % 100 !'= 0) part of the rule

Largest 10, 20, 15 Largest: 20.0 Sequential if updates the largest variable
Triangle 3,4, 10 CANNOT form a triangle Triangle Inequality (e.g., 3 +4 % 10)
Triangle 5 5,5 Equilateral Nested if/elif/else for classification

Analysis & Inference

The grade calculator confirms that elif guarantees exclusivity, preventing a score of 95
from being incorrectly classified as B. The leap vear logic demonstrates the power of
combining and and or operators for compact rule implementation. The triangle classi-
fier showcases the necessity of checking a prerequisite condition (inequality theorem)
before proceeding to detailed classification, a keyv algorithmic pattern.

Conclusion

Decision-making logic is correctly implemented using if/elif/else. The order and
complexity of conditions were managed successfully to solve practical problems.

10

Experiment 4: Loops (for, while), Ranges, and Patterns

Aim

Utilize for and while loops to automate repetitive tasks, understand the range () func-
tion, and practice using loops for numeric accumulation and simple pattern generation.
Theory

Iteration is the ability to execute a block of code repeatedly. Python provides two
primary looping constructs: for and while.

The for Loop (Definite Iteration): This loop iterates over the items of any
sequence (such as a list, tuple, dictionary, set, or string) or other iterable object.

e range(): The range(start, stop, step) function is commonly used with the
for loop. It generates a sequence of integers up to, but not including, the stop
value. Tt is efficient because it generates numbers on demand, rather than creating
a full list in memory.

The while Loop (Indefinite Iteration): This loop executes a block of code re-
peatedly as long as its condition remains true. It is best used when the number of
iterations is not known beforehand, such as reading data until a specific sentinel value
is encountered.

Loop Control and Accumulation:

o Counters: Variables used within loops to track the number of iterations performed.

e Accumulators: Variables used within loops to collect or aggregate results (e.g.,
calculating a running sum or product).

¢ break: Immediately exits the current loop, regardless of the loop condition.
e continue: Skips the rest of the current iteration and moves to the next one.

Pattern Generation: Simple patterns are often generated by using a loop (outer loop)
to control the number of rows and either an inner loop or string multiplication to control
the content of each row.

Design & Implementation

Implement the following tasks in a single script:

1. Sum of N Integers: Use a for loop and an accumulator variable.
2. Factorial: Calculate N! using a while loop.

3. Fibonacci Series: Print the first N terms, demonstrating efficient state update (a,
b = b, a + b) which is a common multiple assignment idiom.

4. Left-aligned Triangle: Print a star pattern using for and string repetition.

5. New Task: Implement a Sentinel-Controlled Loop using while True and a break
statement to process data until a specific termination value (the sentinel) is entered.

11

10

11

12

13

14

15

16

17

1%

19

20

21

22

23

24

25

26

27

28

29

30

40

41

12

43

Code (Python)

N

int (input ("N (for Sum/Factorial/Fibonacci): "))

1. Sum 1..0 (Defintite 1teratzon with for)
s =0
for i in range(l, N+1):
s += 1
print (£"Sum of 1 to {N}: {s}")

2. Factorial (Indefinite iteration with whtle)
f =1
k=1
while k <= N
f = k # Adccumulator for product
k += 1 # Counter update

print (f"Factorial of {N}: {f}")

3. Fibonacct sertes (Efficient state management)
a, b =20, 1

print ("Fibonacci series:", end=" ")
for _ in range(N): # Use _ for a throwaway variable if the loop
inder 1sn’t needed
print{a, end=" ")
a, b=>b, a+ b # Simultaneous update of sequence terms
print ()

4. Pattern

rows = int{input{("rows for pattern: "))
for r in range(l, rows+1):
print ("*x" x r)

5. Sentinel-Controlled Loop

total = 0
print ("\n--- Sentinel Loop (Enter 0 to stop) ---")
while True:
num_str = input("Enter number: ")
try:
num = int(num_str)
if num == O0:

break # Sentinel condition met, exit loop
total += num
except ValueError:
print ("Invalid input. Please enter an integer.'")

print (f"Total sum from sentinel loop: {totall}")

Results

Displayvs sum, factorial, Fibonacci numbers, a star pattern, and the total from the sentinel
loop.

Table 5: Loop Functionality Test Cases

Task Input Output Example Loop/Control Feature

Sum N-5 Sum: 15 range () and += accumulator

Factorial N-5 Factorial: 120 while loop condition and *= accumulator
Fibonacci N—-6 011235 Simultaneous variable assignment
Pattern rows—3 F¥* print) loop with string multiplication
Sentinel Loop 10, 20, 0 Total sum: 30 while True and break on sentinel value

Analysis & Inference

The for loop is the most concise solution for the sum and pattern tasks because the
number of iterations is predefined. The while loop for the sentinel task proves necessarv
when the exit condition depends on data received inside the loop. The Fibonacci update
a, b =">, a + bisa Python idiom for updating two variables atomically. The absence
of integer overflow errors, even for large factorials, highlights Python’s arbitrary-precision
integers.

Conclusion

Both definite (for) and indefinite (while) iteration techniques are implemented success-
fully. Loops are confirmed as the primary mechanism for computational repetition and
sequence generation.

13

Experiment 5: Functions, Parameters, Return Values,
and Testing

Aim
Structure code into reusable, modular functions; master parameter passing (positional,
kevword, and default), return values, and use the if __name__ == "__main__" block

for automated testing.

Theory

Modularity and Functions: A function is a named, reusable block of code defined
using the def kevword. It is a core principle of modular programming, enhancing code
readability, reducing redundancy, and promoting reuse.

Parameters and Arguments: Parameters are the variables listed inside the func-
tion’s definition; theyv receive the values (arguments) passed during a function call.
Pvthon supports:

e Positional Arguments: Matched to parameters based on their order.

¢ Keyword Arguments: Explicitly named in the call, allowing them to be passed
in any order.

e Default Parameters: Parameters assigned a standard value in the function sig-
nature. If an argument for this parameter is omitted in the call, the default value
is used.

Return Values: The return statement terminates a function’s execution and passes
a value (or None, if omitted) back to the caller. Functions can return multiple values as
a tuple.

Docstrings and Testing:

e Docstrings: Multi-line string literals used immediately after the def line to doc-
ument a function’s purpose, parameters, and return value.

e if __name__ == "__main__": This is the standard entrv-point guard. It ensures
that code within this block (typically setup, execution examples, or unit tests) only
runs when the file is executed directly, and not when it is imported as a module
into another script.

e assert: Used for simple, quick tests. If the expression following assert is false,

the program halts with an AssertionError.

Design & Implementation
1. Create utils.py as a module containing all function definitions.
2. Include functions for temperature conversion, absolute value, and palindrome check.

3. New Function: Implement power(base, exp=2) to demonstrate a default param-
eter.

14

10

11

12

13

14

15

16

17

19

20

21

22

23

24

26

27

4. Write simple self-tests using assert within __name__ == "__main_

" 1in utils.py.

5. Create main.py to import and use the utility functions, demonstrating both standard
and default parameter calls.

Code (Python)

utils.py

def c_to_f(c):

mnnconvert Celstus to Fahrenhedt. """
return 9/5 * ¢ + 32

def abs_val(x):
" peturn absolute wvalue without using burlt-zn abs. """
return x if x >= 0 else -x # Concise conditional
erpression

def is_palindrome(s):
tnttpeturn True 4if string reads the same forwards/backwards (
ignores case/spaces). """

t = s.replace(" ", "").lower ()
return t == t[::-1] # Check 2f string equals its reverse
slice

def power (base, exp=2):
" calculate base raised to the power of exp. Default exponent 1s
2 (square). """
return base ** exp

if __name__ == "__main__":
Untt tests: Assertions test ezxzpected behavior
print ("Running utils self-tests...")
assert c_to_f (100) == 212.0
assert abs_val(-10) == 10
assert is_palindrome ("Racecar") is True
assert power (4) == 16 # Test default parameter (
square)
assert power(2, exp=3) == 8 # Test keyword parameter

print ("A1ll utils self-tests passed.")

7

main.py
import utils # Import the utility module

print("--- Function Demonstration ---")
¢ = float(input("Celsius to convert: "))
print (f"Fahrenheit: {utils.c_to_f(c):.1£}")

num = float (input ("Number for absolute value: "))
print (f"Absolute value: {utils.abs_val(num)}")

11

12

13

-

phrase = input ("Phrase for palindrome check: ")
print (£"’{phrase}’ is a palindrome: {utils.is_palindrome (phrase)l}"

)

Demonstrate default and keyword arguments

b = float (input ("Base number: "))

print (f£"Square of {bl}: {utils.power(b)}") # Uses default ezxp=2
print (f"Cube of {b}: {utils.power(b, 3)}") # Posztional argument 3

Results

Running utils.py directly should print the success message, confirming function correct-
ness. Running main.py verifies successful module import and function usage, including
flexible argument passing.

Table 6: Function Usage and Parameter Verification

Function Call Arguments Return Value Concept Verified

utils.c_to_£(20) Positional 20 68.0 Standard return value
utils.power(5) 5 25 Default parameter exp=2 used
utils.power(2, 4) Positional 2, 4 16 Default parameter overridden
is_palindrome("madam") '"madam" True Function logic and string reversal slicing

Analysis & Inference

Separating code into utils.py and main.py promotes modularity and testability.
The if __name__ == "__main__" guard effectively separates the module’s test suite
from its external usage. The power function demonstrates how default parameters make
a function more flexible and easier to use for common cases (squaring). The use of assert
is a simple but effective form of unit testing.

Conclusion

Functions are successfully implemented and demonstrated with various parameter types.
The program structure uses modules and the main guard for clean organization and basic
self-testing.

16

Experiment 6: Strings Deep Dive (Indexing, Slicing,
Methods, Formatting)

Aim

Perform advanced manipulation and analysis of text data using string methods, slicing,
searching, replacing, splitting, joining, and advanced formatting controls for professional
text output.

Theory

Strings as Sequences: Strings in Pvthon are ordered, immutable sequences. Their
sequential nature allows for access to sub-parts of the string through slicing.
Slicing Syntax: The svntax is s[start:stop:step].

e Omitting start defaults to 0; omitting stop defaults to the end.
e A stepof -1 (sl[::-1]) is the idiomatic way to reverse a string.

String Methods for Manipulation: Pvthon provides numerous built-in methods
(which do not change the original string due to immutability, but return a new one):

e Cleaning: strip(), lower (), upper().
¢ Searching/Replacing: find(), replace().

e Splitting/Joining: split () breaks a string into a list of substrings (words, tyvpi-
cally by whitespace): join() concatenates a list of strings into a single string using
a specified delimiter.

Advanced Formatting (f-strings): F-strings support the Format Specification
Mini-Language, providing granular control over output fields:

e Alignment: < (left-align), > (vight-align), = (center-align), often combined with a
width specifier (e.g., :~10).

e Precision: .2f specifies a floating-point number rounded to two decimal places.

e Separators: :, adds thousands separators (commas).

Design & Implementation
Write a script that processes user-input text for several tasks:
1. Count vowels and words using lower () and split().

2. Remove punctuation using string.punctuation and a generator expression with
join().

3. Demonstrate string reversal using the slicing technique s[::-1].
4. Tmplement title-casing.

5. Format a table row with explicit field widths, alignment, and decimal control.

17

10

11

12

13

20

21

22

23

Code (Python)

import string

text = input ("Enter a
1.
vowels
vcount =
wcount
print (f"\nAnalysis: V

Count Vowels and
set ("aeiou")
sum{(1 for ch

2. Remove Punctuatz

Generator exzpressio

no_punct = "".join{(ch
punctuation)

print (f"No punctuation:
print (£"String reversed (s[::-1]):

4. Title (Case

print (f"Built-in Title Case:

5. Format a Table Row

name = "Dr. Smith"; age = 45; salary = 89123.456

Format: Name (Left, 15), Age (Center, 5), Salary (Right, 10,
comma separation, 2 decimals)

print ("\n--- Formatted Table Row ---")

print ("| Name | Age | Salary [|")

print("|----------------- [----- [-- -~ [")

print (£"| {name:<15} | {age:"5d4} | {salary:>10,.2f} [|")

len{text.split{())

sentence, including punctuation: ")
Hords

Use a set for 0(1) membership check
in text.lower () if ch in vowels)

owels={vcount}, Words={wcountl}")

on and 3. Rewverse String
n inside join for efficiency

for ch in text if ch not in string.

>{no_punct}’")
{text [::-11F°")

{text.title () }")

Results

Displays counts, cleaned text, reversed text, title-cased text, and a professionally format-

ted row.

Table 7: Stri

ng Manipulation and Formatting Verification

Input Example

Operation

Observed Output Technique

"Hello, World!'"

No Punctuation Hello World

string.punctuation and join()

"stressed" Reverse desserts s[::-1] slicing
"alice" Title Case Alice title() method
Salary: 89123.456 Formatting 89,123.46 :>10, . 2f specifier (alignment, comma, precision)

Analysis & Inference

The use of a generator expression inside join() for removing punctuation is efficient
as it avoids creating a full intermediate list. The slicing shortcut s[::-1] is the Pythonic

18

way to reverse a sequence. F-string formatting, demonstrated by the salary output (:,
for thousands separator, .2f for precision), is essential for high-quality, readable report
generation.

Conclusion

Advanced string operations, including slicing and various methods for text preparation,
are mastered. Precise output formatting using f-strings is confirmed.

19

Experiment 7: Lists and Tuples (Slicing, Methods,
Comprehensions)

Aim

Manipulate ordered data collections using Lists (mutable) and Tuples (immutable). Prac-
tice common collection methods, slicing, and efficient list construction with comprehen-
S1011S.

Theory

Ordered Collections: Lists and tuples are both ordered sequences, maintaining the
order of elements as theyv are inserted.

Lists (Mutable): Lists are dynamic arrays, defined by square brackets ([1). Their
kev characteristic is mutability, meaning their content can be changed after creation.
Common list methods modify the list in place (e.g., append, insert, pop, remove,
sort). Slicing a list returns a new list object.

Tuples (Immutable): Tuples are fixed-size sequences, defined by parentheses (()).
Their primary characteristic is immutability, meaning their elements cannot be added,
removed, or changed after creation. This makes them suitable for use as data records,
function return values, and dictionary kevs (provided their contents are also immutable).

List Comprehensions (LC): LCs provide a concise, readable, and often highly
efficient way to create a list based on an existing iterable. The general svntax is:
[expression for item in iterable if condition] They perform the tasks of map-
ping (transforming elements) and filtering (selecting elements) simultaneously.

Deduplication: Removing duplicates from a list while maintaining order is a com-
mon algorithmic challenge often solved by iterating over the list and using a Set (an
unordered collection of unique elements) to efficiently track which items have already
been seen in O(1) time.

Design & Implementation
Tasks within a single script:

1. Create a list, and demonstrate mutability: append, insert, remove, pop. Slice the
list.

Q)

. Compute statistics (min, max, avg) using built-in functions.

3. Deduplication: Remove duplicate elements while retaining the original order, utiliz-
ing a set for O(1) membership checking.

4. Use list comprehensions to create a list of squares (mapping) and a filtered list of even
numbers.

5. Demonstrate tuple creation, element access, and the immutability constraint (by at-
tempting a modification).

10

11

12

13

Code (Python)

nums = [5, 2, 9, 2, 7, 5, 1, 6]
print (£"1. Original list: {nums}")

1. List Hutabzilety Demonstratzion

nums . append (10) # Adds to end

nums .insert (2, 99) # Inserts at index 2

nums . remove (2) # Removes first instance of wvalue 2

removed_val = nums.pop(0) # Removes and returns item at wndex 0
(5)

print (f"Modified list: {nums}")
print (f"Slice [2:5] (elements at index 2, 3, 4): {nums[2:5]13}™)

2. Statistzics

mn = min (nums)
mx = max {(nums)
avg = sum{nums) / len(nums)

print (£"\n2. Min: {mn}, Max: {mx}, Avg: {round(avg, 2)1}")

3. Remove Duplicates preserving order
seen = set() # 0(1) lookup
unique = []
for x in nums:
if x not in seen:

seen.add(x)

unique . append (x)
print (£"\n3. Unique elements (order preserved): {uniquel}")

4. List Comprehensions (Map and Filter)

squares = [x*x for x in uniquel # Napping

evens = [x for x in unique if x % 2 == 0] # Filtering
print (f"4. Squares: {squares}")

print (f" Evens: {evens}")

5. Tuples (Immutable Sequence)

person = ("Alice", 25, "New York")

print (f"\n5. Tuple data: {person}, Name: {person[0]}")

person[1] = 26 # Uncommenting this line will cause a TypeError (
immutabzlity)

Results

Shows intermediate and final lists, statistics, tuple access, and the result of the list com-
prehensions.

Analysis & Inference

The list mutability methods show that lists are modified in place, which can save memory
but requires careful state management. The deduplication process is an excellent example

21

Table 8: List and Tuple Operation Results

Operation Initial Final/Result Feature Demonstrated
Mutability 5, 2, 9,2, 7,5,1, 6] [99, 9, 7, 5, 1, 6, 10] append, insert, remove, pop
Deduplication [... 9, 7,5, 1,6, 10] [99, 9, 7, 5, 1, 6, 10] set used for efficient unique check
Comprehension Unique list [9801, 81, 49, 25, 1, 36, 100] Concise list generation (Map)
Tuple Access ("Alice", 25, "NY") Alice Immutable record data

of using a set (fast lookups) and a list (order preservation) together. List comprehen-
sions are confirmed to be highly Pythonic—readable and efficient—for generating new
lists from existing data. Tuples enforce data integrity by preventing accidental modifica-
tions, ideal for fixed data records.

Conclusion

Lists and tuples are correctly used to manage ordered collections. List mutability, tuple
immutability, and the efficiency of list comprehensions are verified.

S
S

Experiment 8: Dictionaries and Sets (Mapping and
Membership)

Aim

Master the use of Dictionaries for kev-value storage (mapping) and Sets for managing
unique elements and performing set-theoretic operations.

Theory

Dictionaries (dict): Dictionaries are dynamic collections that store data as key:

value pairs. They are unordered (in Python versions before 3.7) or insertion-ordered
(Python 3.7 1).

e Keys: Must be unique and hashable (immutable types like strings, numbers, or
tuples).

e Efficiency: Dictionary lookups, insertions, and deletions have an average time
complexity of O(1), making them extremely efficient for mapping data.

o Safe Access: dict.get(key, default) is the preferred method for key access, as
it returns a specified default value (often None or 0) instead of raising a KeyError
if the kev is not found.

Sets (set): Sets are unordered collections of unique, hashable elements, defined by
curly braces ({}) or the set () constructor.

¢ Membership Testing: Because sets are implemented using hash tables, checking
for the existence of an element (element in set) is highly efficient (O(1) average
time).

e Set Algebra: Sets simplify algebraic operations on groups of data:
— Union (A | B): All elements in A or B.

— Intersection (A & B): Elements common to both A and B.
— Difference (A - B): Elements in A but not in B.

Design & Implementation
Build a script that demonstrates both data structures:

1. Word Frequency Counter: Read a sentence and use a dictionary with dict.get ()
to count word occurrences.

Q)

. Interactive Contact Book: Use a dictionary to implement a menu-driven program
supporting Add, Lookup, and Delete by name.

3. Set Operations: Define two sets and calculate their union, intersection, and differ-
ences using operator syntax.

4. New Task: Dictionary Comprehension - Create a dictionary mapping kev strings to
their lengths using the concise comprehension syntax: {k: v for ...}

23

10

11

12

13

15

16

17

20

21

22

23

24

25

26

27

28

29

30

31

32

Code (Python)

import string

1. Word Frequency Counter
text = "The quick brown fox jumps over the lazy brown dog"
freq = {7}

for w in text.split():
W = w.strip(string.punctuation).lower () # (Clean and
normalize the word
freqlw] = freq.get(w, 0) + 1 # Safe wncrement using dict.
get
print (f"Word Frequency: {freql}")

2. Interactive Contact Book

book = {"Alice": "555-0101", "Bob": "555-0202"}

print ("\n--- Contact Book (Interactive) ---")

while True:

cmd = input("(A)dd (L)ookup (D)elete (Q)uit: ").strip() .upper ()
if ¢md == "A":

name = input("Name: "); phone = input{("Phone: ")
book [name] = phone

elif cmd == "L":
name = input ("Name to lookup: ")

Safe lookup: provides "nmot found" 1f key ts absent
print (f"Phone for {name}: {book.get(name, ’not found’)}")
elif cmd == "D":
name = input("Name to delete: ")
if name in book:
del book[name]
print (f"{name} deleted.")
else:
print ("Name not found.")
elif cmd == "Q":
break
print (f"Current entries: {list(book.keys())}") # Show current keys

3. Set Operations

A=4{1, 2, 3, 4, 5}

B = {4, 5, 6, 7, 8}

print ("\n--- Set Operations ---")

print (f"Set A: {A}, Set B: {B}")

print (f"Union (A | B): {A | B}")

print (f"Intersection (A & B): {A & B}")
print (f"Difference (A - B): {A - B}")

4. Dictionary Comprehension

words = ["alpha", "beta", "gamma", "delta"]

word_lengths = {word: len(word) for word in words if len(word) >
4%

print (£"\nWord Lengths (>4): {word_lengths}")

24

Results

The execution confirms O(1) lookups in the contact book and correct algebraic results
from sets.

Table 9: Dictionary and Set Operation Verification

Structure/Task Input/Initial Observed Final State Concept Verified

Dictionary (Freq.) "brown fox brown dog" ’brown’: 2, ’fox’: 1... dict.get(key, 0) + 1 for counting
Contact Book (Lookup) Lookup "Charlie" Phone: not found Safe access using dict.get()

Set Intersection A—{1..5}, B—{4..8} {4, 5%} Common elements identified efficiently
Dict Comp. "alpha", "beta" ’alpha’: 5, ’delta’: 5 Concise mapping and filtering

Analysis & Inference

The use of dict.get(w, 0) in the frequency counter is a key Python idiom for initializing
and incrementing counts without needing an explicit if/else check for kev existence.
The interactive contact book confirms the dictionary’s role as a versatile, mutable map.
Sets are confirmed to handle group algebra (union, intersection) efficiently and are
excellent for quick membership tests due to their use of hashing.

Conclusion

Dictionaries and sets are implemented correctly for mapping and membership tasks. The
ability to choose between these two structures based on the need for unique kevs, elements
versus ordered storage is established.

o
Ut

Experiment 9: Files and Exceptions (Text, CSV-like,
JSON-like)

Aim

Implement file T/O for text data using the context manager; practice robust data pars-
ing: and utilize exception handling (try/except) to manage runtime errors gracefully.

Theory

File I/O and Context Managers: The interaction with external files (Input/Output)
is a critical component of persistence. The open() function returns a file object. The
with open(path, mode) as f: statement is the preferred method, as it uses a context
manager. This guarantees that the file resource is automatically and safely closed, even
if errors occur during processing.

¢ Modes: r (read), w {write/overwrite), a (append).

¢ Encoding: Using encoding="utf-8" is standard practice for handling the widest
range of characters.
Exception Handling: Program errors that occur during runtime are called excep-
tions. Robust programming requires anticipating and managing these errors using the
try/except structure.

e try: The code block that may raise an exception.

e except ExceptionType: The block that executes if a specific exception (e.g.,
ValueError, FileNotFoundError) is raised in the try block. This allows the pro-
gram to recover (e.g., skip a bad line) instead of crashing.

Data Serialization: Saving complex Pvthon objects (like lists or dictionaries) to a

text file requires serialization (converting the object to a string).

e repr(): Generates a string representation of an ohject that is valid Pvthon syntax.

e ast.literal_eval: The built-in ast module’s 1iteral_eval function is the safe
way to deserialize Pvthon literal strings (containing lists, dictionaries, strings, num-
bers, etc.) back into their corresponding Python objects. Tt specifically rejects any
string containing executable code, avoiding the severe security risks associated with
the eval() function.

Design & Implementation

1. Write structured user data (Name, Age) to a . txt file using w mode, ensuring a header
and a deliberately bad data line for testing.

Lo

Read the file back and use try/except ValueError inside the loop to calculate the
average age while gracefully skipping malformed lines (e.g., non-numeric age).

3. Demonstrate file appending using a mode.
4. Store and retrieve a dictionary object using repr () for safe serialization and ast.literal_eval

for safe deserialization.

26

10

11

12

13

15

16

17

1%

19

20

21

22

23

24

Code (Python)

import ast
import os
data_path = "people_data.csv"
json_path = "config_data.txt"

1. Text Write using ’w’ mode (overwrtites) and header

print ("--- Writing Initial Data (w mode) ---")

with open(data_path, "w", encoding="utf-8") as f:

f.write("Name,b Age\n") # Header

f.write("Alice ,30\n")

f.write("Bob,25\n")

f.write("Charlie ,NA\n") # Intentional bad line for error testing

2. Append Data using ’a’ mode

with open{data_path, "a", encoding="utf-8") as f:
f.write("David ,40\n")

print (f"Data appended to {data_pathl}.")

3. CSV-like Parse with Try/Ezcept

ages = []
print ("\n--- Parsing Data with Error Handling ---")
try:

with open{(data_path, "r", encoding="utf-8") as f:
next (f) # Skip header line
for line in f:

line = line.strip()

if not line: continue

try:
Expecting format: Name, Adge
name, age_str = line.split(",")
age = int(age_str)

ages.append(age)
except ValueError:
Catches both split error (wrong format) and int
conversion error
print (£" [ERROR] Skipping invalid entry: {linel}")

avg_age = sum{ages)/len(ages) if ages else 0

print (f"Successfully processed {len(ages)} valid entries.")
print (f"Average Age: {round(avg_age, 2)}")

except FileNotFoundError:

print (f"[FATAL ERROR] File {data_path} not found.")

4. JSON-like Safe Save/Load
data = {"course": "UCEST105", "count": len(ages), "ages": ages}
with open{(json_path, "w", encoding="utf-8") as f:
f.write(repr{(data)) # repr() creates a walid Python string
representation

8]
-1

print (f"\n--- Safe Data Loading ({json_path}) ---")
with open(json_path, "r", encoding="utf-8") as f:

content = f.read()
try:
loaded_data = ast.literal_eval(content)
print ("Data loaded successfully.")
print (f"Loaded Course: {loaded_data.get(’course’)}")
except (ValueError, SyntaxError):
print ("[ERROR] Failed to safely evaluate data. File
content corrupted.")
Results

The results demonstrate both successful data flow and the necessaryv defensive program-
ming techniques for file T,/0.

Table 10: File T/O and Exception Handling Verification

File Mode/Operation Key Action Observed Console Output Concept Verified

wand a Write Alice, Append David File contains Alice, Bob, David File modes and with open()
try/except Reading line Charlie,NA [ERROR] Skipping invalid entry: <Charlie,NA Graceful handling of ValueError
CSV-like Parse Valid lines Successfully processed 3 valid entries Data validation and conversion
Safe Load Read config_data.txt Loaded Course: UCEST105 ast.literal_eval safety

Analysis & Inference

The use of the with open() context manager ensures resource cleanup. The try/except
ValueError block around the parsing step is critical; it allows the program to continue
processing valid data even when encountering corrupted records, which is essential for
robust data pipelines. ast.literal_eval is confirmed as the secure method for deserial-
izing simple Python data structures from a text file, safeguarding against malicious code
injection that could occur with eval().

Conclusion

File read ‘write operations and mode differences (w, a) are established. Robust data
parsing and graceful error recovery using try/except are correctly implemented, making
the program resilient to common I/O failures.

Experiment 10: Simple Project with Modules and
Classes

Aim

Integrate Pyvthon fundamentals by creating a small, menu-driven application ("Student
Manager") that uses an Object-Oriented approach (class), organized modules, and file
persistence.

Theory

Object-Oriented Programming (OOP) and Classes: OOP is a programming paradigm
based on the concept of "objects," which are instances of classes. A class is a blueprint
for creating objects, defining a set of attributes (data, variables) and methods (behav-
ior, functions) that operate on that data.

e Constructor (__init__): The method automatically called when a new object is
created. Tt is used to initialize the object’s attributes.

¢ String Representation (__str__): A special method that returns a human-
readable string representation of the object, used when the object is passed to
print ().

Modularity: Breaking a large program into smaller, interconnected modules (.py
files) is key to managing complexity. Each module should handle a single, distinct con-
cern (e.g., student.py for data logic, store.py for persistence). This improves code
reusability and maintainability.

Persistence and Integration: This experiment ties together I;O (Experiment 9)
and OOP (Classes) by demonstrating how to save a list of custom objects to an external
file and reconstruct them back into memory. This simple form of persistence is crucial
for any stateful application.

Design & Implementation

1. student.py: Define the Student class with attributes (name, roll, marks) and
methods (percent, result str__).

| J—

o

store.py: Implement the utility functions save_students () (saving to pipe-separated
format) and load_students () (parsing the file back into Student objects). Include
try/except for file loading robustness.

3. main.py: Create the interactive loop and menu (Add, List, Save, Load, Quit)
that manages a master list of Student objects and orchestrates the calls to the
store module.

Code (Python)

10

11

12

13

14

16

17

1%

10

11

12

14

15

16

17

19

20

21

22

23

24

@

student.py
class Student:
"""Represents a student with roll, name, and marks.
Calculates percentage and result.”"""

def __init__(self, name, roll, marks):
self .name = name
self.roll = roll
self .marks = marks # List of integers

def percent (self):
Prevent ZeroDivistonError <f marks list 18 empty
return sum(self.marks) / (len(self.marks) or 1)

def result(self):
return "PASS" if self.percent() >= 40 else "FAIL"

def __str__(self):
Enhanced string representation for listing
return f"Roll: {self.proll:<5} Name: {self.name
:<15} Pct: {self .percent () :.1£}% | {self
.result O}"

store.py
from student import Student
import os

def save_students (path, students):
trirSaves a list of Student objects to a pipe-separated
text fale. """
try:
with open{(path, "w", encoding="utf-8") as f:
for s in students:
marks_str = ",".join{(str{(m) for m
in s.marks)
f.write(f"{s.ro0ll}|{s.name}|{
marks_str}\n")
return True
except Exception as e:
print (f"[SAVE ERROR] Failed to save file: {e}")
return False

def load_students (path):
"""Loads a list of Student objects from a text file,
handling errors. """
students = []
if not os.path.exists(path):
print (f"File ’{path}’ not found. Starting fresh.")
return students

try:

30

10

11

12

13

with open(path, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
if not line: continue

roll, name, marks_str = line.split("[")
Robust parsing of marks
marks = [int(x.strip()) for x in marks_str.split ("

,") if x.strip() and x.strip().isdigit ()]
students.append (Student (name, roll, marks))
print (f"Successfully loaded {len(students)}
students.")
except Exception as e:
print (£" [LOAD ERROR] File corruption or unexpected
format: {e}. Data cleared.")
return [] # Return empty list on severe corruption
return students

main.py
from student import Student
import store

STUDENT_FILE = "students.txt"
students = store.load_students (STUDENT_FILE) # Load on startup

def add_student ():

name = input ("Name: ")
roll = input{("Roll: ")
marks_input = input ("Marks (comma separated, e.g.,
80,75,90): ")
try:
marks = [int(x.strip()) for x in marks_input.split

(",") if x.strip (]
if not marks:
raise ValueError ("No valid marks entered."
)
students.append (Student (name, roll, marks)
)
print ("Student added successfully.")
except ValueError as e:
print (f" [INPUT ERROR] Invalid marks format. {el}")

def list_students ():
print ("\n--- Student Records ---")
if not students:
print ("No students recorded.")
return
for s in students:
print (s)

31

30

31

33

36

print (" ------- e - ")

Main menu
while True:
print ("\n (1) Add (2) List (3) Save (4) Load (5) Quit")

loop

ch = input("Choice: ").strip()
if c¢ch == "1":
add_student ()
elif c¢ch == "2":
list_students ()
elif c¢ch == "3":
store.save_students (STUDENT_FILE, students)
elif c¢ch == "4":
students = store.load_students (STUDENT_FILE)
elif c¢ch == "BH":
break
else:
print ("Invalid choice. Please select 1-5.")
Results
Users can add students, list them with percentages and pass/fail, and persist to a text
file.
Table 11: Project Integration and Output Verification
Action (Menu) Input Example Core Functionality Concepts Integrated
Add (1) Roll: 101, Marks: 30, 40 New Student object created OOP Class __init__, List
List (2) (Internal data) ...Pct: 35.0% | FAIL __str__ method, percent() logic
Save (3) (Internal data) students.txt created /overwritten Modularity (store.py), File ;0O
Load (4) Non-existent file File ’students.txt’ not found... FException Handling (FileNotFoundError)

Analysis & Inference

The project structure is a complete example of a simple Pvthon application, demon-
strating separation of concerns: student.py handles data logic, store.py handles
persistence, and main.py handles the user interface. Using the Student class ensures
data integrity and consistency, as all student-related calculations (percentage, result) are
encapsulated within the object itself. The robust loading function in store.py (using
os.path.exists and try/except) is essential for professional applications.

Conclusion

A fully integrated, menu-driven Python project was successfully implemented. The ex-
periment confirms mastery of OOP, modular design, structured I,;0, and error handling,
achieving the final project objective.

