
DEPARTMENT OF ELECTRONICS & COMMUNICATION

ENGINEERING

COLLEGE OF ENGINEERING, THIRUVANANTHAPURAM

AE431: CONTROL SYSYTEM AND SIGNAL PROCESSING LAB

LAB MANUAL

2021

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

DEPARTMENT OF ELECTRONICS & COMMUNICATION

ENGINEERING

COLLEGE OF ENGINEERING, THIRUVANANTHAPURAM

CERTIFICATE

This is a controlled document of Department of Electronics and Communication of College

of Engineering, Trivandrum. No part of this can be reproduced in any form by any means

without the prior written permission of the Head of the Department, Electronics &

Communication, College of Engineering, Trivandrum. This is prepared as per 2015 B.Tech

Electronics and Communication scheme.

Prepared by:

Ms. Jeeshma Mary Paul,

Ms. Kavya Manohar

Research Scholar

Department of Electronics and

Communication,

College of Engineering, Trivandrum

Compiled by:

Dr. Anitha Edison,

Ms. Narendramudra N G

Assistant Professor

Department of Electronics and

Communication,

College of Engineering, Trivandrum

Reviewed by:

Approved by:

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

Course

Code

Course name L-T-P

Credits

Year of

Introduction

AE431 CONTROL SYSTEM AND SIGNAL PROCESSING LAB 0-0-3-1 2016

SIGNAL PROCESSING LAB

1. Familiarization of signal processing commands used in MATLAB Software.

2. Developing elementary signal function modules (m-files) for unit impulse, step,

exponent and ramp sequence.

3. Generating continuous and discrete time sequences.

4. Carrying out mathematical operations on signals.

5. Response of LTI system described by difference and differential equation.

6. Developing a program for computing inverse Z-Transform.

7. Developing program for finding magnitude & phase response of LTI System 8.

Developing program for computing DFT & IDFT.

8. Developing a program for computing circular convolution.

9. Design of filter: FIR, IIR, ECG Signal filter (can be done as 3 separate experiments).

CONTROL SYSTEM LAB using MATLAB

1. Familiarization of MATLAB commands used in control system design

2. Representation of system in MATLAB: state space representation & transfer function

representation

3. Stability analysis using Bode plot, root locus & their pole-zero-gain representation.

4. Implementation of PID control using both m-file and Simulink.

5. Pole placement technique applied to stabilize a system.

6. Realization of a compensator design.

7. Modelling and analysis of a first order system.

8. Modelling of an unstable system (inverted pendulum, ball & plate system etc.)

PC Based Control

1. PLC programming: familiarization of instruction set.

2. PLC programming: simulation of process control.

LabVIEW based Virtual Instrumentation

1. Getting started with LabVIEW: Basic operations, controls, indicators, and simple

Programming structures.

2. Debugging a VI and sub-VI.

3. Familiarization of DAQ card.

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

(i) Course Outcomes (COs)

Course

Outcome

Course Outcome (CO) Description

Cogn

itive

level

Assessment tool

At the end of the course, the student should

be able to:

AE431/CO 1
Build signal processing systems using

MATLAB
K4

Continuous Evaluation/

Practical Exam

AE431/CO 2 Model control systems using MATLAB K4
Continuous Evaluation/

Practical Exam

AE431/CO 3
Make use of PLC, LabVIEW for modelling

basic control systems
K3

Continuous Evaluation/

Practical Exam

AE431/CO 4
Develop a custom filter design toolbox using

MATLAB
K6 Course Project

AE431/CO 5 Prepare record of lab experiments K3 Evaluation of Record

AE431/CO6 Present the course project K3
Demo and presentation of

course project

 (ii) CO-PO Mapping

Course

Outcome

CO-PO/PSO matrix showing level of correlation (1-Low, 2-Medium, and 3-High)

PO-

1

PO-

2

PO-

3

PO-

4

PO-

5

PO-

6

PO-

7

PO-

8

PO-

9

PO-

10

PO-

11

PO-

12

PSO

-1

PSO

-2

PSO

-3

AE431/CO 1 3 3 3

AE431/CO 2 3 3 3

AE431/CO 3 3 3

AE431/CO 4 3 3 3 3 3 3 3 3 3

AE431/CO 5 3

AE431/CO 6 3

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

PART A

Signal Processing Lab

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

EXPERIMENT 1: FAMILIARIZATION OF SIGNAL

PROCESSING COMMANDS USED IN MATLAB SOFTWARE

Aim

To familiarize basic MATLAB functions and signal processing toolbox.

MATLAB

 MATLAB is a software package for high-performance language for technical computing.

It integrates computation, visualization, and programming in an easy-to-use environment where

problems and solutions are expressed in familiar mathematical notation. The name MATLAB

stands for matrix laboratory. MATLAB features a family of add-on application-specific solutions

called toolboxes. Toolboxes are comprehensive collections of MATLAB functions (M-files) that

extend the MATLAB environment to solve particular classes of problems. Areas in which

toolboxes are available include Image processing, signal processing, control systems, neural

networks, fuzzy logic, wavelets, simulation, and many others.

(a) DEFINTION OF VARIABLES

Variables are assigned numerical values by typing the expression directly Eg: a=1+2 yields a=3.

MATLAB utilizes the following arithmetic operations: + addition, - subtraction, * multiplication,

/ division, ˆ power operation, ‘ transpose

There are certain predefined variables which can be used in the same manner as user defined

variables: i=sqrt(-1), j=sqrt(-1), pi = 3.1416

There are also a number of predefined functions that can be used when defining a variable.

Some common functions that are used are Abs- magnitude of a number, Angle- angle of a

complex number, Cos- cosine function, assume arguments in radian. Exp-exponential

functions.

(b) DEFINTION OF MATRICES

MATLAB is based on matrix and vector algebra. Even scalars are treated 1x1 matrix.

Therefore, vector and matrix operation are simple as common calculator operations. Vectors

can be defined in two ways. The first method is used for arbitrary elements, v= [1 3 5 7] creates

1x4 vector elements with elements 1 3 5 &7. Note that commas would have been used in the

place of spaces to separate the elements. Additional elements can be added to the vector v(5)=8

yields the vector v = [1357]. Previously defined vectors can be sued to define a new vector.

For example, with we defined above a= [910]; b = [v a]; creates the vector b = [1357910]. The

second method is used for creating vector with equally spaced elements t=0:0.1:10; creates

1x101 vector with elements 0,0.1,0.2. 10. Note that the middle number defines the

increments is set to a default of 1 k=0,10 creates 1x11 vector with the elements 0,1,2. . . .10.

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

Matrices are defined by entering the element row by row. M = [124; 368] creates the matrix

M= 1 2 4 3 6 8 There are number of special matrices that can be defined Null matrix: []; Nxm

matrixes of zero: M=zeros (m,m); Nxm matrix of ones: M= ones (n,m); Nxn matrix of identity:

M=eye (n).

A particular elements of matrix can be assigned M(1,2)=5 place the number 5 in the

first row, 2nd column. Operations and functions that were defined for scalars in the previous

section can be used on vectors and matrices. For example a=[1 2 3]; b=[4 5 6]; c=a+b yield

c=579. Functions are applied element by element. For example t=0:‘0; x=cos(2*t) creates a

vector ‘x’ with elements equal to cos(2t) for t=0,1,2.10

(c) GENERAL INFORMATION

MATLAB is case sensitive. So ‘a’ and ‘A’ are two different names. Comment

statements are preceded by ‘a’.

1) M-files M-files are macros of MATLAB commands that are stored as ordinary text

file with the extension ‘in’ that is ‘filename.m’. An m-file can be either a function with input

and output variables or a set of commands. MATLAB requires that the m-file must be stored

either in the working directory or in a directory that is specified in the MATLAB path list.

The following commands typed from within MATLAB demonstrate how this m-file is used.

X=2,y=3,z=y plus x(y,x) MATLAB m-files are most efficient when written in a way that

utilizes matrix or vector operations, loops and if statements are available, but should be used

sparingly since they are computationally inefficient. An example is for k=1:10 x(k)=cos(k)

end; This creates a 1x10 vector ‘x’ containing the cosine of the positive integers from 1 to 10.

This operation is performed more efficiently with the commands k=1:10 x=cos(k) which

utilizes a function of a vector instead of a for loop. An if statement can be used to define

combinational statement.

Expected Output

Familiarize basic MATLAB functions and signal processing toolbox

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

EXPERIMENT 2: GENERATION OF ELEMENTARY SIGNALS

Aim

Plot elementary signals

a. Impulse b. Step c. Ramp d. Exponential

Steps

1. Define a variable for time 𝑛

2. Define unit impulse function 𝛿[𝑛] = {
1 𝑓𝑜𝑟 𝑛 = 0
0 𝑓𝑜𝑟 𝑛 ≠ 0

3. Define unit step function 𝑢[𝑛] = {
1 𝑓𝑜𝑟 𝑛 ≥ 0
0 𝑓𝑜𝑟 𝑛 < 0

4. Define unit ramp function 𝑟[𝑛] = {
𝑛 𝑓𝑜𝑟 𝑛 ≥ 0
0 𝑓𝑜𝑟 𝑛 < 0

5. Define exponential function 𝑥[𝑛] = 𝐶𝛼𝑛. Get 𝐶 and 𝛼 as user inputs. Ask each student to

select a different 𝐶 and 𝛼

6. Plot the functions

MATLAB functions and methods to be familiarised

1. Use MATLAB Help to familiarise basic functions: plot, stem, subplot, xlabel, ylabel,

title, axis, ones, zeros, clc, clear all, close all, input

2. Familiarise the usage of conditional statements

Expected Output

Typical waveform for time varying from -10 to 10 and parameters for exponential function 𝐶 = 1

and 𝛼 = 2

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

EXPERIMENT 3: GENERATION OF PERIODIC SIGNALS

Aim

Plot discrete time periodic signals of given amplitude and frequency

a. Sine wave b. Square wave c. Triangular wave

Steps

1. Define a variable for amplitude amp. Get amp as user input. Ask each student to

select a different amp

2. Define a variable for frequency f. Get f as user input. Ask each student to select a

different f

3. Define frequency dependant time base tp and n

4. Define periodic sine wave y_sin = 𝑎𝑚𝑝.∗ sin(2 ∗ 𝑝𝑖 ∗ 𝑓𝑡 ∗ 𝑝)

5. Define periodic square wave y_square= 𝑎𝑚𝑝.∗ square(2 ∗ 𝑝𝑖 ∗ 𝑓𝑡 ∗ 𝑝)

6. Define periodic triangular wave y_triangle = 𝑎𝑚𝑝.∗ sawtooth(2 ∗ 𝑝𝑖 ∗ 𝑓𝑡 ∗ 𝑝, 0.5)

7. Plot the functions

MATLAB functions and methods to be familiarised

1. Use MATLAB Help to familiarise basic functions: plot, stem, subplot, xlabel, ylabel,

title, axis, clc, clear all, close all, input

2. Familiarise the usage of MATLAB inbuilt functions sin, square and sawtooth

Expected Output

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

EXPERIMENT 4: SIGNAL OPERATIONS

Aim

Perform following signal operations on discrete time signals

a. Amplitude Scaling b. Addition of two signals c. Time Scaling d.Time Shifting

Steps

1. Define first sequence x1[n]. Get x1[n] as user input. Ask each student to select a

different x1[n]

2. Define second sequence x2[n]. Get x2[n] as user input. Ask each student to select a

different x2[n]

3. Perform amplitude scaling y_amplitude_scaling = 𝑎𝑎.∗ 𝑥1[𝑛]. Get aa as user input.

Ask each student to select a different aa

4. Perform addition y_addition=𝑥1[𝑛] + 𝑥2[𝑛]

5. Perform time scaling y_time_scaling =𝑥1[𝑎𝑡.∗ 𝑛] . Get at as user input. Ask each

student to select a different at

6. Perform time shifting y_time_shift1 =𝑥1[𝑛 − 𝑡𝑠] and y_time_shift2 =𝑥1[𝑛 + 𝑡𝑠]. Get

ts as user input. Ask each student to select a different ts

7. Plot the functions

MATLAB functions and methods to be familiarised

1. Use MATLAB Help to familiarise basic functions: plot, stem, subplot, xlabel, ylabel,

title, axis, clc, clear all, close all, input

2. Familiarise the usage of basic signal operations time shift, time scale, amplitude scale

and addition

Expected Output

Input:

 aa= 5, at= 2, ts=3, x1[n]= [3 4 8 1], starting point of x1[n]= 0, x2[n]= [2 5 6 8 9], starting point

of x2[n]= -1

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

EXPERIMENT 5: Z TRANSFORM AND INVERSE Z TRANSFORM

Aim

Obtain z-transform and inverse z-transform of following functions.

a. 𝑥[𝑛] = 𝑎𝑛𝑢[𝑛]𝑏.𝑥[𝑛] = sin(𝜔𝑛)𝑢[𝑛]

Theory

The Z-transform converts a discrete-time signal, which is a sequence of real or complex

numbers, into a complex frequency-domain representation. It can be considered as a discrete-

time equivalent of the Laplace transform. The z-transform is useful for the manipulation of

discrete data sequences and has acquired a new significance in the formulation and analysis

of discrete-time systems. It is used extensively today in the areas of applied mathematics,

digital signal processing, control theory, population science, and economics. These discrete

models are solved with difference equations in a manner that is analogous to solving

continuous models with differential equations. The role played by the z transform in the

solution of difference equations corresponds to that played by the Laplace transforms in the

solution of differential equations.

Steps

1. Define input x1[n] = anu[n]. Get a as user input. Ask each student to select a

different a

2. Define z transforms of x1[n], y1= ztrans(x1[n])

3. Define input x2[n] = sin(ωn) u[n]. Get w as user input. Ask each student to select a

different w

4. Define z transforms of x2[n], y2= ztrans(x2[n])

5. Define inverse z transform of y1, z1[n]=iztrans(y1)

6. Define inverse z transform of y2, z2[n]=iztrans(y1)

7. Display the values

MATLAB functions and methods to be familiarised

1. Use MATLAB Help to familiarise basic functions: display, clc, clear all, close all, input

2. Familiarise the usage of ztrans() and iztrans() functions

Expected Output

For input: a= 5, w= 20

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

EXPERIMENT 6: IMPULSE RESPONSE OF LTI SYSTEM

Aim

Obtain impulse response of first order and second order LTI system

Steps

1. Give numerator [b1] and denominator [a1] coefficients of first order LTI system. Get

numerator and denominator as input. Ask each student to select a different [b1] and

[a1]

2. Find impulse response of first order system using Matlab function impz([b1],[a1])

3. Give numerator [b2] and denominator [a2] coefficients of second order LTI system.

Get numerator and denominator as input. Ask each student to select a different [b2]

and [a2]

4. Find impulse response of second order system using Matlab function impz([b2],[a2])

5. Plot the functions

MATLAB functions and methods to be familiarised

1. Use MATLAB Help to familiarise basic functions: stem, subplot, xlabel, ylabel, title,

axis, clc, clear all, close all, input

2. Familiarise the usage of impz() function

Expected Output

Input: b1= [1 -1], a1= 2, b2= [1 (-7/4) (-0.5)], a2= [1 (1/4) (-1/8)]

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

EXPERIMENT NO: 7

 LTI SYSTEM RESPONSE

AIM:

 Write a MATLAB program to plot the magnitude and phase response of an LTI system

THEORY:

Linear Time Systems (LTI Systems) are a class of systems used in DSP that are both linear and

time invariant. Linear systems are systems whose output for a linear combination of inputs are the

same as a linear combination of individual responses to those inputs. The time invariant systems

are systems where the output does not depend on when an input was applied. These properties

make LTI systems easy to represent and understand graphically.

LTI systems can be described in terms of impulse response (eg: ℎ[𝑛] = [1 1]) or in terms of

transfer functions. (eg: 𝐻(𝑧) =
1−

7

4
𝑧−1−

1

2
𝑧−2

1+
1

4
𝑧−1−

1

8
𝑧−2

, 𝐻(𝑧) =
1

2
−

1

2
𝑧−1)

Frequency response of an LTI system is the DFT of its impulse response.

STEPS

1. Define the impulse response of LTI system as a discrete sequence

2. Use inbuilt function to compute DFT of the sequence

3. Plot the magnitude and phase response in terms of frequency

4. Define the coefficients of numerator and denominator of transfer function as discrete

sequences.

5. Use inbuilt function to find the corresponding frequency response

6. Plot its magnitude and phase response in dB and degrees respectively

MATLAB FUNCTIONS USED:

● fft() : Computes DFT using FFT algorithm

● freqz() : Computes the complex frequency response from the Transfer function

coefficients

● plot(): •ABS() : abs(X) returns an array Y such that each element of Y is the absolute

value of the corresponding element of X.

● abs(): To compute absolute value of magnitude of a complex function

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

SAMPLES OF EXPECTED OUTPUT

Need to simulate a paste output

RESULT

The MATLAB program to obtain the time and frequency response of an LTI system is executed

and output is obtained.

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

EXPERIMENT NO: 8

 DFT AND IDFT

AIM

Write a MATLAB program to find DFT and IDFT of input sequence.

THEORY

Discrete Fourier Transform is the transformation used to represent the finite duration frequencies.

DFT of a discrete sequence x(n) is obtained by performing sampling operations in both time

domain and frequency domain. It is the frequency domain representation of a discrete digital

signal.

The DFT of a sequence x (n) of length N is given by the following equation,

X(k) = {∑𝑁−1
𝑛=0 𝑥(𝑛)𝑒

−𝑗2𝜋𝑘𝑛

𝑁 ; 0 ≤ 𝑘 ≤ 𝑁 − 1}

IDFT performs the reverse operation of DFT, to obtain the time domain sequence x(n) from

frequency domain sequence X(k). IDFT of the sequence is given as,

x(n) =
1

𝑁

STEPS

1. Accept an input sequence from the user, interactively

2. Without using inbuilt functions, compute the DFT of the sequence. Plot the magnitude

response and phase response along with the input sequence

3. Using the sequence obtained as DFT in the previous step as input, compute the IDFT

without using inbuilt functions.

4. Plot the IDFT and verify it is same as the original input.

MATLAB FUNCTIONS USED:

● sqrt(): Square root function

● zeros(): Defines sequence of zeros

● exp(): Exponential function

● subplot(): For multiple plots in a single figure

● xlabel(); ylabel(): For labeling the axes

● title(): For providing title to Figure

● disp(): For displaying a sequence

● fft(): DFT function using FFT Algorithms

● ifft(): IDFT function using Inverse FFT algorithm

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

SAMPLES OF EXPECTED OUTPUT

Input Sequence=[1 2 3]

RESULT

The MATLAB program to find DFT and IDFT of input sequence is executed and output is

obtained.

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

EXPERIMENT NO: 9

 LINEAR CONVOLUTION

AIM

Write a MATLAB program to perform linear convolution of two input sequences without

using inbuilt function and verify the result using MATLAB function.

THEORY

Convolution is used to find the output response of a digital system. The linear convolution of

two continuous time signals x[n] and h[n] is defined by y[n] = x[n] * h[n]. The length of the

output sequence y[n]= length of x[n]+length of h[n]-1.

STEPS

1. Interactively accept two input sequences from the user

2. Make the lengths of the sequences equal by padding zeros

3. Perform linear convolution by user defined functions

4. Repeat the same using builtin functions

5. Plot both signals and verify the result

MATLAB FUNCTIONS USED:

● length(): Finding the length of a sequence

● zeros(): Defines a sequence of zeros

● for (): Looping function

● conv(): Linear Convolution function

SAMPLES OF EXPECTED OUTPUT

The first sequence, X: [1 2 3]

The second sequence, H: [1 2 1]

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

RESULT

The MATLAB program to find the linear convolution of two input sequences is executed and

output is verified using inbuilt function.

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

EXPERIMENT NO:10

 CIRCULAR CONVOLUTION

AIM

Write a MATLAB program to obtain circular convolution of two

sequences.

THEORY

Circular Convolution of two sequences x[n] and y[n], each of length N is given by ,

p[n] = x[n]©y[n].

If the length of sequence is not equal, zero padding is done to get the maximum length among the

two. The resulting convolved signal would be zero outside the range n= 0,1,...,N-1.

STEPS

1. Interactively accept two input sequences from the user

2. Make the lengths of the sequences equal by padding zeros

3. Perform circular convolution by using matrix method

4. Repeat the same using builtin functions

5. Plot both signals and verify the result

MATLAB FUNCTIONS USED:

● length(): Finding the length of a sequence

● fliplr (): Flip matrix left to right. fliplr(A) returns A with columns flipped in the left-

right direction, that is, about a vertical axis.

● zeros(): Defines a sequence of zeros

● cconv(): Circular convolution function

SAMPLES OF EXPECTED OUTPUT

The first sequence, 𝑋 = [123456]

The second sequence, 𝐻 = [12]

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

RESULT

The MATLAB program to find the circular convolution of two input sequences is executed and

output is verified using inbuilt function.

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

EXPERIMENT NO: 11

IIR FILTER DESIGN

AIM

Write a MATLAB program to design an IIR Filter (Butterworth and Chebyshev).

THEORY

The Butterworth filter is a type of signal processing filter designed to have as flat a frequency

response as possible in the pass band so that it is also termed a maximally flat magnitude filter.

The frequency response of the Butterworth filter is maximally flat (has no ripples) in the passband

and rolls off towards zero in the stopband. When viewed on a logarithmic Bode plot the response

slopes off linearly towards negative infinity. A first-order filter's response rolls off at −6 dB per

octave (−20 dB per decade) (all first-order lowpass filters have the same normalized frequency

response). A second-order filter decreases at −12 dB per octave, a third-order at −18 dB and so on.

Butterworth filters have a monotonically changing magnitude function with ω, unlike other filter

types that have non-monotonic ripple in the passband and/or the stopband.

Chebyshev filters are analog or digital filters having a steeper roll-off and more pass band ripple

(type I) or stop band ripple (type II) than Butterworth filters. Chebyshev filters have the property

that they minimize the error between the idealized and the actual filter characteristic over the range

of the filter, but with ripples in the passband.Because of the passband ripple inherent in Chebyshev

filters, filters which have a smoother response in the passband but a more irregular response in the

stopband are preferred for some applications.

These are the most common Chebyshev filters. The gain (or amplitude) response as a function of

angular frequency ω of the nth order low pass filter is

𝐺𝑛(𝜔) = |𝐻𝑛(𝑗𝜔)| =
1

√(1 + 𝜀2𝑇𝑛2) (
𝜔
𝜔0

)

Whereε is the ripple factor, ω0 is the cutoff frequency and Tn() is a Chebyshev polynomial of the

nth order.

INSTRUCTIONS

1. Accept the butterworth filter design parameters for the user (Pass band and stop

band cut-off frequencies, and attenuations)

2. For each type of lowpass, bandpass, high pass filter, find the filter order and

implement the filter design using inbuilt functions

3. Repeat the same for Chebyshev filter design

4. Plot filter magnitude and phase response

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

MATLAB FUNCTIONS USED

● abs(): abs(X) returns an array Y such that each element of Y is the absolute value of the

corresponding element of X.

● gridon() : Grid lines for 2-D and 3-D Plots

● input() : Request user input

● buttord(): Butterworth filter order selection.[

○ [N, Wn] = buttord(Wp, Ws, Rp, Rs) returns the order N of the lowest order

digital Butterworth filter that loses no more than Rp dB in the passband and has

at least Rs dB of attenuation in the stopband. Wp and Ws are the passband and

stopband edge frequencies, normalized from 0 to 1 (where 1 corresponds to pi

radians/sample)

● butter(): Butterworth digital and analog filter design.

○ [B,A] = butter(N,Wn) designs an Nth order lowpass digital Butterworth filter and

returns the filter coefficients in length N+1 vectors B (numerator) and A

(denominator)The coefficients are listed in descending powers of z. The cutoff

frequency Wn must be 0.0 <Wn< 1.0, with 1.0 corresponding to half the sample

rate.

● cheby1(): Chebyshev Type I digital and analog filter design.

○ [B,A] = cheby1(N,R,Wp) designs an Nth order lowpass digital Chebyshev filter

with R decibels of peak-to-peak ripple in the passband. CHEBY1 returns the

filter coefficients in length N+1 vectors B (numerator) and A (denominator). The

passband-edge frequency Wp must be 0.0 <Wp< 1.0 with 1.0 corresponding to

half the sample rate.

● cheb1ord() Chebyshev Type I filter order selection.

○ [N, Wp] = cheb1ord(Wp, Ws, Rp, Rs) returns the order N of the lowest order

digital Chebyshev Type I filter that loses no more than Rp dB in the passband

and has at least Rs dB of attenuation in the stopband. Wp and Ws are the

passband and stopband edge frequencies, normalized from 0 to 1 (where 1

corresponds to pi radians/sample).

● freqz() : Digital filter frequency response.

○ [H,W] = freqz(B,A,N) returns the N-point complex frequency response vector H

and the N-point frequency vector W in radians/sample of the filter

SAMPLES OF EXPECTED OUTPUT:

BUTTERWORTH

a) Low pass

The pass band frequency wp = 1500

The stop band frequency ws = 3000

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

The pass band attenuation rp = .15

The stop band attenuation rs = 60

The sampling frequency fs = 70000

n =8

wn = 0.1151

n2 = 5

wn2 = 0.1000

N = 512

b)High pass

The pass band frequency wp =2000

The stop band frequency ws = 3500

The pass band attenuation rp = 0.2

The stop band attenuation rs = 40

The sampling frequency fs = 80000

n =8

wn = 0.1151

n2 = 5

wn2 = 0.1000

N = 512

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

c) Bandpass

The pass band frequency wp =1500

The stop band frequency ws = 2000

The pass band attenuation rp = 0.3

The stop band attenuation rs = 40

The sampling frequency fs = 90000

n =8

wn = 0.1151

n2 = 5

wn2 = 0.1000

N = 512

CHEBYSHEV

a)Lowpass

The passband attenuation=2

The stopband attenuation=20

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

The stopband edge frequency=200

The passband edge frequency=300

The sampling frequency=2000

b)Highpass

The passband attenuation=2

The stopband attenuation=20

The stopband edge frequency=200

The passband edge frequency=300

The sampling frequency=2000

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

c)Bandpass

The passband attenuation=2

The stopband attenuation=20

The upper stopband edge frequency=500

The lower stopband edge frequency=100

The upper passband edge frequency=400

The lower passband edge frequency=200

The sampling frequency=2000

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

RESULT:

Designed Butterworth and Chebyshev Filters.

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

EXPERIMENT NO: 12

FIR FILTER DESIGN

AIM:

 Write a MATLAB program to design FIR Filter using Window method.

THEORY

The rectangular window sequence is given by

𝜔𝑅(𝑛) = 1𝑓𝑜𝑟 −
𝑁 − 1

2
≤ 𝑛 ≤

𝑁 − 1

2
0𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

In the design of FIR filters using any window technique, the order can be calculated using the

formula given by

𝑁 =
−20𝑙𝑜𝑔(√𝛿𝑝𝛿𝑠)

14.6
(𝑓𝑠 − 𝑓𝑝)

𝐹𝑠

− 13

Where 𝛿𝑝is the pass band ripple, is the stop band ripple, 𝑓𝑝 is the pass band frequency, 𝑓𝑠 is the

stop band frequency and 𝐹𝑠 is the sampling frequency.

The equation for hamming window is given by

𝜔𝐻(𝑛) = 0.54 +
0.46𝑐𝑜𝑠2𝜋𝑛

𝑁 − 1
𝑓𝑜𝑟 −

𝑁 − 1

2
≤ 𝑛 ≤

𝑁 − 1

2
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The hanning window sequence can be obtained by substituting α=0.5 in the raised cosine

window function.

STEPS

1. Generate the ideal impulse response (Sinc function).

2. Call window functions for - Rectangular, Hamming, Hanning and Kaiser windows

3. Multiply them with ideal impulse response.

4. Plot the frequency responses of these windowed sequences to obtain the FIR filter

responses of the respective windows.

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

MATLAB Functions To be familiarised:

length (), fft(X), fft(X,N), abs(X), abs(X), hann(N),hamming(N): Hamming window,

rectwin(N)

SAMPLES OF EXPECTED OUTPUT

1. Low pass Filter using Rectangular window

Order of the filter : 25, Cutoff frequency : 500, Sampling frequency : 3000

2. High pass Filter using Hamming window

order of the filter : 30, cutoff frequency : 700, Sampling frequency : 3000

3. Band pass Filter using Hanning window

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

Order of the filter: 30, Cut-off frequency1 : 460, Cut-off frequency2 :540, Sampling

frequency: 3000

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

PART B

Control System Using

MATLAB

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

EXPERIMENT 1: Familiarisation Of MATLAB commands using

Control System Design

AIM

To familiarize with MATLAB commands used in control system design.

ABOUT COMMANDS

The first step in the control design process is to develop appropriate mathematical models of

the system to be controlled. These models may be derived either from physical laws or

experimental data. Visually, a dynamic in represented by state- space and transfer function.

Here we get familiarized with vcarious control system design commands such as tf, tf2zp,

zp2tf, tf2ss, ss2tf, pzmap, feedback,bode, rlocus.

RESULT:-

Various commands of MATLAB used in control system design were familiarized using

help command.

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

EXPERIMENT 2: Representation Of System in MATLAB: State

Space Representation & Transfer Function Representation

AIM:-To represent a system in MATLAB in both state space and transfer function

form.

THEORY:-

Transfer function models describe the relationship between the inputs and outputs of a system

using a ratio of polynomials. The model order is equal to the order of the denominator

polynomial. The roots of the denominator polynomial are referred to as the model poles. The

roots of the numerator polynomial are referred to as the model zeros. The parameters of a

transfer function model are its poles, zeros and transport delays. A state-space representation

is a mathematical model of a physical system as a set of input, output and state variables related

by first-order differential equations or difference equations. State variables are variables

whose values evolve through time in a way that depends on the values they have at any given

time and also depends on the externally imposed values of input variables. Output variables’

values depend on the values of the state variables. The "state space” is the Euclidean space in

which the variables on the axes are the state variables. The state of the system can be

represented as a vector within that space.

Steps:-

1. Define transfer function.

2. Define state space form

3. To Transform a given Transfer Function to State Space Model using MATLAB.

4. Display the functions.

MATLAB functions and methods to be familiarised

Use MATLAB Help to familiarise basic functions: tf(num,den), ss(A,B,C,D,Ts), tf2ss(b,a),

clc, clear all, close all, input

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

EXPECTED RESULT:-

System has been represented using MATLAB using both state space and transfer

function form.

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

EXPERIMENT 3:Stability Analysis Using Bode Plot,

Root Locus & Their Pole-Zero-Gain Representation.

AIM:- To obtain stability analysis of a system using bode plot, root locus, and pole-zero

gain representation.

THEORY:-

Root locus analysis is a graphical method for examining how the roots of a system change with

variation of a certain system parameter, commonly a gain within a feedback system. This is a

technique used as a stability criterion in the field of classical control theory developed by

Walter R. Evans which can determine stability of the system. The root locus plots the poles of

the closed loop transfer function in the complex s-plane as a function of a gain parameter. The

root locus of a feedback system is the graphical representation in the complex s-plane of the

possible locations of its closed-loop poles for varying values of a certain system parameter.

The points that are part of the root locus satisfy the angle condition. The value of the parameter

for a certain point of the root locus can be obtained using the magnitude condition.

Bode plot is the graphical tool for drawing the frequency response of a system. It is represented

by two separate plots, one is the magnitude vs frequency and the other one is phase vs

frequency.The magnitude is expressed in dB and the frequency is generally plotted in log scale.

One of the advantages of the Bode plot in s-domain is that the magnitude curve can be

approximated by straight lines which allow the sketching of the magnitude plot without exact

computation.

A pole–zero plots is a graphical representation of a rational transfer function in the complex

plane which helps to convey certain properties of the system such as: Stability, Causal system

/ anticausal system, Region of convergence (ROC), Minimum phase / non minimum phase. A

pole zero plot shows the location in the complex plane of the poles and zeros of the transfer

function of a dynamic system, such as a controller, compensator, sensor, equalizer, filter, or

communications channel. By convention, the poles of the system are indicated in the plot by

an X while the zeros are indicated by a circle or O. A pole-zero plots can represent either a

continuous-time (CT) or a discrete-time (DT) system. For a CT system, the plane in which the

poles and zeros appear is the s plane of the Laplace transform. In this context, the parameter s

represents the complex angular frequency, which is the domain of the CT transfer function.

For a DT system, the plane is the z plane, where z represents the domain of the Z-transform.

Steps:-

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

1. Plot the root locus of the transfer function

2. Draw the Bode Plot for the given transfer function

3. Find Gain Margin, Phase Margin, Gain Cross over Frequency, Phase Cross over Frequency,

Resonant Peak, Resonant Frequency, Bandwidth

4. Draw the pole-zero gain plot

MATLAB functions and methods to be familiarised

Use MATLAB Help to familiarise basic functions: clc, clear all, close all, input, figure, rlocus,

title, grid, logspace, title, grid, bode, margin, tf(num,den), pzmap(g).

EXPECTED RESULTS:-

ROOT LOCUS: - Typical plot for Root locus of the transfer function G(s)=1/(S^3+8S^2+17S)

BODE PLOT:- Typical plot forfor the given transfer function G(S)=1/S(S^2+2S+3)

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

EXPERIMENT 4: Modelling and Analysis Of First Order

System

AIM:- To obtain closed loop step and impulse response of a first order unity feedback

system.

THEORY:-

In closed loop control, the control action from the controller is dependent on feedback from

the process in the form of the value of the process variable (PV). A closed loop controller,

therefore, has a feedback loop which ensures the controller exerts a control action to

manipulate the process variable to be the same as the "Reference input" or "set point". For this

reason, closed loop controllers are also called feedback controllers.

Impulse calculates the unit impulse response of a dynamic system model. For continuous-time

dynamic systems, the impulse response is the response to a Dirac input δ(t). For discrete-time

systems, the impulse response is the response to a unit area pulse of length Ts and height 1/Ts,

where Ts is the sample time of the system. (This pulse approaches δ(t) as Ts approaches zero.)

For state-space models, impulse assumes initial state values are zero. Impulse (sys) plots the

impulse response of the dynamic system model sys. This model can be continuous or discrete,

and SISO or MIMO. The impulse response of multi-input systems is the collection of impulse

responses for each input channel. The duration of simulation is determined automatically to

display the transient behaviour of the response.

Steps:-

1. Plot impulse response.

2. Plot step response.

MATLAB functions and methods to be familiarised :-

Use MATLAB Help to familiarise basic functions: clc, clear all, close all, input, tf(a,b);

feedback(g,1), Subplot, step(sys),impulse(sys).

EXPECTED RESULTS:-

Step response:-

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

Impulse Response:-

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

EXPERIMENT 5: Realization of a compensator design

AIM:-To design phase lead, phase lag compensators with the given parameters

THEORY:-

There are three types of compensators — lag, lead and lag-lead compensators. A compensating

network is one which makes some adjustments in order to make up for deficiencies in the

system. Compensating devices are may be in the form of electrical, mechanical, hydraulic etc.

Most electrical compensator are RC filter. The simplest network used for compensator is

known as lead, lag network.

A system which has one pole and one dominating zero (the zero which is closer to the origin

than all over zeros is known as dominating zero.) is known as lead network. If we want to add

a dominating zero for compensation in control system then we have to select lead

compensation network.

A system which has one zero and one dominating pole (the pole which is closer to origin that

all other poles is known as dominating pole) is known as lag network. If we want to add a

dominating pole for compensation in control system then, we have to select a lag compensation

network.

Steps:-

1. Design a phase lead compensator

2. Draw the bode plot

3. Find alpha, phi degree

4. Draw bode plot of compensated system

5. Find compensated gain margin.

6. Design a lag compensator

7. Draw the bode plot of uncompensated system and compensated system

8. Display the compensated gain margin.

MATLAB functions and methods to be familiarised :-

Use MATLAB Help to familiarise basic functions: clc, clear all, close all, input, tf(a,b), Subplot,

bode, title, margin, display, conv

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

EXPECTED RESULTS:-

Lead Compensator

Lag compensator

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

PART C

PC Based Control

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

EXPERIMENT 1: FAMILIARIZATION OF PLC INSTRUCTION

SET

Aim

Familiarise basic instruction set in ladder programming

Programmable Logic Controller

Programmable logic controller (PLC) is a specialized control computer for industrial and

commercial applications. It can be programmed to do a variety of logical functions. It replaces

electromechanical relays logic elements with a solid-state digital computer with stored program,

which can emulate the interconnection of many relays to perform certain logical tasks. A PLC

has many input terminals, through which it interprets ‘high’ and ‘low’ logical states from sensors

and switches. It also has many output terminals, through which it outputs ‘high’ and ‘low’

signals to power lights, solenoids, contactors, small motors and other devices lending themselves

to on/off control

VPLCT-03 from Vi Microsystems

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

Ladder Logic Programming Basics

Ladder logic (also known as ladder diagram or LD) is a programming language used to program

a PLC. It is a graphical programming. A ladder logic is drawn between the two lines (power

line/Signal line) Each line of code is called a rung, The PLC takes one rung and executes that and

then goes to the next line. Each PLC has its own specific IDE to create ladder programme. PLC

in the lab is programmed using a Versa Pro.

Basic ladder logic symbols

Symbol Logic

Normally open contact

Normally closed contact

Normally open output

Normally closed output

To do

Create ladder programs for basic logic gates like AND, OR, XOR etc and verify output

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

PART D

LabVIEW based Virtual

Instrumentation

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

EXPERIMENT 1: INTRODUCTION TO LABVIEW

Aim

Familiarise:

a. Block diagram and front panel windows in LabVIEW

b. Controls and indicators in LabVIEW

c. Generate and display sinewave in LabVIEW

LabVIEW

LabVIEW is a graphical programming tool developed by National Instruments. In LabVIEW, we

programme by connecting different functional blocks.

LabVIEW programs are called Virtual Instruments (VI). A VI has two parts: a front panel and a

block diagram. Front panel is to build user interface. Front panel has options to place controls

and indicators, which are the interactive input and output terminals of the VI, respectively.

Controls are knobs, push buttons, dials, and other input devices. Indicators are graphs, LEDs, and

other displays. Controls simulate instrument input devices and supply data to the block diagram

of the VI. Indicators simulate instrument output devices and display data the block diagram

acquires or generates. After you build the user interface, you add graphical code using VIs and

structures to control the front panel objects. The block diagram contains this graphical source

code.

Steps

Familiarize controls and indicators

1. Open LabVIEW and create a blank VI. There will be two windows: front panel and block

diagram

2. Place some indicators and controls in front panel window

3. Connect the controls and indicators using connecting wires in block diagram window

4. Observe the change in indicators as controls are changed

Generate a sinewave and display the output waveform

1. In front panel, place waveform graph indicator to display the output

2. Switch to block diagram panel and create waveform generation function. Waveform

generation functions are available in signal processing toolbox.

3. Place controls to change the amplitude and frequency of waveform

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

Expected Output

a. Familiarisation of front panel and block diagram panel with numeric indicators and

controls

b. Front panel with slider control and tank indicator

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

c. Sine waveform displayed in LabVIEW front panel

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

EXPERIMENT 2: RESPONSE OF A SECOND ORDER SYSTEM

USING LABVIEW

Aim

Obtain the step response of a second order system specified by the transfer function 𝐻(𝑠)

Steps

1. In block diagram panel, create block to generate transfer function (Already available as

subVI in control and simulation>>control design>>model construction>>CD construct

transfer function model.vi)

2. Create controls to change numerator and denominator of transfer function

3. Use draw transfer function block to display the transfer function (subVI in control and

simulation>>control design>>model construction>>CD draw transfer function equation.vi)

and create an indicator for it

4. To obtain the step response, use the corresponding VI (subVI in control and

simulation>>control design>>Time Response>>CD step response.vi)

5. Create a graph indicator to view step response

Expected Output

step response of the system specified by the transfer function 𝐻(𝑺) =
𝟏

𝒔𝟐+𝟎.𝟖𝒔+𝟏

AE431: CONTROL SYSTEM AND SIGNAL PROCESSING LAB

 EXPERIMENT 3: FAMILIARIZATION OF DAQ CARD

Aim

To set up hardware and to develop a LabVIEW VI for monitoring the speed of a dc motor.

Steps

1. A disc with perforations is attached to the shaft of the motor

2. An IR LED is kept ON on one side of disc and a phototransistor at the other.

3. As the motor rotates a train of pulses will be produced at the collector of the photo

transistor. It can be connected to an analog input channel of the DAQ card.

4. Develop a VI in LabVIEW for data acquisition. There is an express VI called DAQ

assistant for data acquisition. Set the channel number, type of the data etc. and data can

be acquired.

5. For speed monitoring, train of pulses from the collector of the phototransistor is acquired

and processed to the data into rpm.

6. The rpm data can be displayed numerically in a text indicator or in a meter indicator

display.

Expected Output

A GUI displaying the speed of motor in rpm

